Abstract

The assessment of welding-induced residual stress is always of significant interest due to its adverse effect on the structural stability and mechanical performance of the welded structure. Incorporation of intricate phenomena, in particular, thermal gradient, phase development, volumetric dilation, and phase transformation strain during FE modelling, not only acts as a reliable method for residual stress calculation but also serves as a directive to reduce tensile residual stress in a weldment which is sensitive to the selection of materials. In order to investigate the same for continuous and pulse laser-welded Ti–6Al–4V alloy, the sequentially coupled thermal–metallurgical–mechanical models are established. The internal state-dependent variables (SDVs) are implemented to capture the growth of phase evolved during diffusionless β → α′ transformation using Koistinen–Marburger (K–M) theory in the cooling cycle. The role played by a phase transformation induced strain on the generation of residual stress is systematically investigated. The volumetric dilation and associated phase fraction form the basis for the estimation of phase transformation strain in the present study. The accomplishment of highest martensitic fraction (∼95%) produced a phase transformation strain of 7.95 × 10−3 in pulse mode of operation. As a result, reversal of residual stress from tensile to compressive is perceived for pulse laser-welded specimen. Similarly, a sign of enriched martensitic transformation is noticed that puts the weld surface into a compression state and mitigates the overall tensile residual stress. The assumption of diffusional phase transformation during heating cycle and non-diffusional transformation during cooling phase in laser welding is more appropriate to predict the residual stress using thermal–metallurgical–mechanical model.

References

1.
Yadroitsev
,
I.
,
Krakhmalev
,
P.
, and
Yadroitsava
,
I.
,
2014
, “
Selective Laser Melting of Ti6Al4V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution
,”
J. Alloys Compd.
,
583
(
2
), pp.
404
409
.
2.
Semiatin
,
S. L.
, and
Bieler
,
T. R.
,
2001
, “
The Effect of Alpha Platelet Thickness on Plastic Flow During Hot Working of Ti–6Al–4V With a Transformed Microstructure
,”
Acta Mater.
,
49
(
17
), pp.
3565
3573
.
3.
Mishurova
,
T.
,
Cabeza
,
S.
,
Artzt
,
K.
,
Haubrich
,
J.
,
Klaus
,
M.
,
Genzel
,
C.
,
Requena
,
G.
, and
Bruno
,
G.
,
2017
, “
An Assessment of Subsurface Residual Stress Analysis in SLM Ti6Al4V
,”
Materials
,
10
(
4
), p.
348
.
4.
Bhatti
,
A. A.
,
Barsoum
,
Z.
,
Murakawa
,
H.
, and
Barsoum
,
I.
,
2015
, “
Influence of Thermo-Mechanical Material Properties of Different Steel Grades on Welding Residual Stresses and Angular Distortion
,”
Mater. Des.
,
65
(
1
), pp.
878
889
.
5.
Kumar
,
B.
,
Bag
,
S.
,
Mahadevan
,
S.
,
Paul
,
C. P.
,
Das
,
C. R.
, and
Bindra
,
K. S.
,
2021
, “
On the Interaction of Microstructural Morphology With Residual Stress in Fiber Laser Welding of Austenitic Stainless Steel
,”
CIRP J. Manuf. Sci. Technol.
,
33
(
2
), pp.
158
175
.
6.
Ahn
,
J.
,
He
,
E.
,
Chen
,
L.
,
Wimpory
,
R. C.
,
Dear
,
J. P.
, and
Davies
,
C. M.
,
2017
, “
Prediction and Measurement of Residual Stresses and Distortions in Fibre Laser Welded Ti6Al4V Considering Phase Transformation
,”
Mater. Des.
,
115
(
3
), pp.
441
457
.
7.
Maeda
,
T.
, and
Flower
,
H. M.
,
1989
,
Sixth World Conf. on Titanium
,
P.
Lacombe
,
R.
Tricot
, and
G.
Beranger
, eds.,
Les Editions de Physique
,
Paris
, p.
1589
.
8.
Szkliniarz
,
W.
, and
Smołka
,
G.
,
1995
, “
Analysis of Volume Effects of Phase Transformation in Titanium Alloys
,”
J. Mater. Process. Technol.
,
53
(
1–2
), pp.
413
422
.
9.
Kumar
,
B.
, and
Bag
,
S.
,
2019
, “
Phase Transformation Effect in Distortion and Residual Stress of Thin-Sheet Laser Welded Ti-Alloy
,”
Opt. Lasers Eng.
,
122
(
11
), pp.
209
224
.
10.
Payares-Asprino
,
M. C.
,
Katsumoto
,
H.
, and
Liu
,
S.
, “
Effect of Martensite Start and Finish Temperature on Residual Stress Development in Structural Steel Welds
,”
Welding Journal
,
87
(
11
), pp.
279s
289s
.
11.
Withers
,
P. J.
, and
Bhadeshia
,
H.
,
2001
, “
Residual Stress. Part 2–Nature and Origins
,”
Mater. Sci. Technol.
,
17
(
4
), pp.
366
375
.
12.
Ding
,
R.
,
Guo
,
Z. X.
, and
Wilson
,
A.
,
2002
, “
Microstructural Evolution of a Ti–6Al–4V Alloy During Thermomechanical Processing
,”
Mater. Sci. Eng. A
,
327
(
2
), pp.
233
245
.
13.
Akman
,
E.
,
Demir
,
A.
,
Canel
,
T.
, and
Sınmazçelik
,
T.
,
2009
, “
Laser Welding of Ti6Al4V Titanium Alloys
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
3705
3713
.
14.
Kumar
,
B.
,
Bag
,
S.
,
Paul
,
C. P.
,
Das
,
C. R.
,
Ravikumar
,
R.
, and
Bindra
,
K. S.
,
2020
, “
Influence of the Mode of Laser Welding Parameters on Microstructural Morphology in Thin Sheet Ti6Al4V Alloy
,”
Opt. Laser Technol.
,
131
(
11
), p.
106456
.
15.
Trivedi
,
A.
,
Suman
,
A.
, and
De
,
A.
,
2006
, “
Integrating Finite Element Based Heat Transfer Analysis With Multivariate Optimization for Efficient Weld Pool Modeling
,”
ISIJ Int.
,
46
(
2
), pp.
267
275
.
16.
Liu
,
S.
,
Kouadri-Henni
,
A.
, and
Gavrus
,
A.
,
2017
, “
Numerical Simulation and Experimental Investigation on the Residual Stresses in a Laser Beam Welded Dual Phase DP600 Steel Plate: Thermo-Mechanical Material Plasticity Model
,”
Int. J. Mech. Sci.
,
122
(
3
), pp.
235
243
.
17.
Munsi
,
A.
,
Waddell
,
A. J.
, and
Walker
,
C. A.
,
2001
, “
The Influence of Vibratory Treatment on the Fatigue Life of Welds: A Comparison With Thermal Stress Relief
,”
Strain
,
37
(
4
), pp.
141
149
.
18.
Zhu
,
X. K.
, and
Chao
,
Y. J.
,
2004
, “
Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304L Stainless Steel
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
263
272
.
19.
Fachinotti
,
V. D.
,
Cardona
,
A.
,
Baufeld
,
B.
, and
Van der Biest
,
O.
,
2012
, “
Finite-Element Modelling of Heat Transfer in Shaped Metal Deposition and Experimental Validation
,”
Acta Mater.
,
60
(
19
), pp.
6621
6630
.
20.
Zubairuddin
,
M.
,
Albert
,
S. K.
,
Chaudhari
,
V.
, and
Suri
,
V. K.
,
2014
, “
Influence of Phase Transformation on Thermo-Mechanical Analysis of Modified 9Cr-1Mo Steel
,”
Procedia Mater. Sci.
,
5
(
3
), pp.
832
840
.
21.
Leblond
,
J. B.
,
Mottet
,
G.
, and
Devaux
,
J. C.
,
1986
, “
A Theoretical and Numerical Approach to the Plastic Behaviour of Steels During Phase Transformations—I. Derivation of General Relations
,”
J. Mech. Phys. Solids
,
34
(
4
), pp.
395
409
.
22.
Deng
,
D.
,
2009
, “
FEM Prediction of Welding Residual Stress and Distortion in Carbon Steel Considering Phase Transformation Effects
,”
Mater. Des.
,
30
(
2
), pp.
359
366
.
23.
Akbari Mousavi
,
S. A. A.
, and
Miresmaeili
,
R.
,
2008
, “
Experimental and Numerical Analyses of Residual Stress Distributions in TIG Welding Process for 304L Stainless Steel
,”
J. Mater. Process. Technol.
,
208
(
1–3
), pp.
383
394
.
24.
Dwibedi
,
S.
, and
Bag
,
S.
,
2021
, “
Influence of Process Parameters on Microstructural Evolution, Solidification Mode, and Impact Strength in Joining of Stainless Steel Thin Sheets
,”
Adv. Mater. Process. Technol.
,
7
(
4
), pp.
1
16
.
25.
Sahu
,
A. K.
, and
Bag
,
S.
,
2020
, “
Probe Pulse Conditions and Solidification Parameters for the Dissimilar Welding of Inconel 718 and AISI 316L Stainless Steel
,”
Metall. Mater. Trans. A
,
51
(
5
), pp.
2192
2208
.
26.
Yadaiah
,
N.
, and
Bag
,
S.
,
2012
, “
Effect of Heat Source Parameters in Thermal and Mechanical Analysis of Linear GTA Welding Process
,”
ISIJ Int.
,
52
(
11
), pp.
2069
2075
.
27.
Buffa
,
G.
,
Ducato
,
A.
, and
Fratini
,
L.
,
2013
, “
FEM Based Prediction of Phase Transformations During Friction Stir Welding of Ti6Al4V Titanium Alloy
,”
Mater. Sci. Eng. A
,
581
(
23
), pp.
56
65
.
28.
Rae
,
W.
,
2019
, “
Thermo-Metallo-Mechanical Modelling of Heat Treatment Induced Residual Stress in Ti–6Al–4V Alloy
,”
Mater. Sci. Technol.
,
35
(
7
), pp.
747
766
.
29.
Baruah
,
M.
, and
Bag
,
S.
,
2017
, “
Influence of Pulsation in Thermo-Mechanical Analysis on Laser Micro-Welding of Ti6Al4V Alloy
,”
Opt. Laser Technol.
,
90
(
4
), pp.
40
51
.
30.
Tan
,
P.
,
Shen
,
F.
,
Li
,
B.
, and
Zhou
,
K.
,
2019
, “
A Thermo-Metallurgical-Mechanical Model for Selective Laser Melting of Ti6Al4V
,”
Mater. Des.
,
168
(
8
), p.
107642
.
You do not currently have access to this content.