Abstract

The implantation of stents and instruments with capillary action demands super-finished internal surfaces of the manufactured product. Elasto-abrasives magneto-spiral finishing (EAMSF) is the attempt made in this paper to enhance finishing productivity by incorporating the abrasive flow in spiral motion due to the presence of the magnetic field. Here, novel impregnated elasto-magnetic abrasive particles (IMPs) are used in a magnetic field-assisted environment to polish the inner walls of the workpiece. In EAMSF, magnetic force provides excess finishing pressure to the abrasives. In contrast, the high-impact polystyrene (HIPS) elasticity absorbs the extra force of the IMPs on the finishing surface. An Indigenous mathematical relation considering the physics of this superfinishing process indicating material removal shows a close resemblance to the experimental results with an error percentage of 1.03 has been developed. The results of the experimentation reveal that 50% concentration of abrasives and a magnetic field density of 18mT yield a superior surface finish with a Ra value equal to 0.053 µm and maximum material removal of 6.9 mg, while in the absence of a magnetic field, excellent surface finish with a Ra = 0.266 µm and maximum material removal of 5.4 mg is achieved. In the presence of magnetic field density, significant enhancement of material removal, surface finish, and burr removal is observed. Finishing the surface at 50% abrasive concentration with a magnetic field represents regular finishing, and the trench marks on the original surface are removed after finishing.

References

1.
Jain
,
V.
,
2008
, “
Abrasive-Based Nano-Finishing Techniques: An Overview
,”
Mach. Sci. Technol.
,
12
(
3
), pp.
257
294
.
2.
Yan
,
B.-H.
,
Tzeng
,
H.-J.
,
Huang
,
F. Y.
,
Lin
,
Y.-C.
, and
Chow
,
H.-M.
,
2007
, “
Finishing Effects of Spiral Polishing Method on Micro Lapping Surface
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
920
926
.
3.
Fong
,
H.
, and
Reneker
,
D. H.
,
1999
, “
Elastomeric Nanofibers of Styrene-Butadiene-Styrene Triblock Copolymer
,”
J. Polym. Sci. B: Polym. Phys.
,
37
(
24
), pp.
3488
3493
.
4.
Updike
,
D. P.
, and
Kalnins
,
A. A.
,
1972
, “
Contact Pressure Between an Elastic Spherical Shell and a Rigid Plate
,”
ASME J. Appl. Mech.
,
39
(
4
), pp.
1110
1114
.
5.
Tian
,
Y. B.
,
Zhong
,
Z. W.
,
Lai
,
S. T.
, and
Ang
,
Y. J.
,
2013
, “
Development of Fixed Abrasive Chemical Mechanical Polishing Process for Glass Disk Substrates
,”
Int. J. Adv. Manuf. Technol.
,
68
(
5–8
), pp.
993
1000
.
6.
Wani
,
A. M.
,
Yadava
,
V.
, and
Khatri
,
A.
,
2007
, “
Simulation for the Prediction of Surface Roughness in Magnetic Abrasive Flow Finishing (MAFF)
,”
J. Mater. Process. Technol.
,
190
(
1–3
), pp.
282
290
.
7.
Sankar
,
M. R.
,
Mondal
,
S.
,
Ramkumar
,
J.
, et al
,
2009
, “
Experimental Investigations and Modeling of Drill Bit-Guided Abrasive Flow Finishing (DBG-AFF) Process
,”
Int. J. Adv. Manuf. Technol.
,
42
(
7–8
), pp.
678
688
.
8.
Sankar
,
M. R.
,
Jain
,
V. K.
, and
Ramkumar
,
J.
,
2009
, “
Experimental Investigations Into Rotating Workpiece Abrasive Flow Finishing
,”
Wear
,
267
(
1–4
), pp.
43
51
.
9.
Singh
,
S.
, and
Shan
,
H. S.
,
2002
, “
Development of Magneto Abrasive Flow Machining Process
,”
Int. J. Mach. Tools Manuf.
,
42
(
8
), pp.
953
959
.
10.
Walia
,
R. S.
,
Shan
,
H. S.
, and
Kumar
,
P.
,
2009
, “
Enhancing AFM Process Productivity Through Improved Fixturing
,”
Int. J. Adv. Manuf. Technol.
,
44
(
7–8
), pp.
700
709
.
11.
Gaikhe
,
Y. S.
,
Chavan
,
A. M.
, and
Pawade
,
R. S.
,
2013
, “
Surface Topography Analysis in Electrophoretic Deposition-Assisted Polishing of AISI 316L Stainless Steel
,”
Mater. Manuf. Process.
,
28
, pp.
676
682
.
12.
Jayswal
,
S.
,
Jain
,
V.
, and
Dixit
,
P.
,
2005
, “
Modeling and Simulation of Magnetic Abrasive Finishing Process
,”
Int. J. Adv. Manuf. Technol.
,
26
(
5–6
), pp.
477
490
.
13.
Yuan
,
Q.
,
Qi
,
H.
, and
Wen
,
D.
,
2016
, “
Numerical and Experimental Study on the Spiral-Rotating Abrasive Flow in Polishing of the Internal Surface of 6061 Aluminium Alloy Cylinder
,”
Powder Technol.
,
302
, pp.
153
159
.
14.
Saraf
,
A. R.
, and
Yadav
,
S. P.
,
2018
,”
2—Fundamentals of Bare-Metal Stents, In Functionalised Cardiovascular Stents
,
J
Gerard Wall
,
H
Podbielska
, and
M
Wawrzyńska
, eds.,
Woodhead Publishing
,
Kidlington, UK
, pp.
27
44
.
15.
Khalaj Amnieh
,
S.
,
Mosaddegh
,
P.
, and
Fadaei Tehrani
,
A.
,
2017
, “
Study on Magnetic Abrasive Finishing of Spiral Grooves Inside of Aluminum Cylinders
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2885
2894
.
16.
Jain
,
V. K.
,
2013
,
Micromanufacturing Processes
,
CRC (Taylor and Francis Group)
,
Boca Raton, FL
.
17.
Saraf
,
A. R.
,
Yadav
,
S. P.
, and
Sadaiah
,
M.
,
2018
, “Precision Photochemical Machining,”
Micro and Precision Manufacturing
,
K
Gupta
, ed.,
Springer
,
Cham
, pp.
41
70
.
18.
Liao
,
H. T.
,
Shie
,
J. R.
, and
Yang
,
Y. K.
,
2008
, “
Applications of Taguchi and Design of Experiments Methods in Optimization of Chemical Mechanical Polishing Process Parameters
,”
Int. J. Adv. Manuf. Technol.
,
38
(7–8), pp.
674
682
.
19.
Kenda
,
J.
,
Duhovnik
,
J.
,
Tavčar
,
J.
, et al
,
2014
, “
Abrasive Flow Machining Applied to Plastic Gear Matrix Polishing
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
141
151
.
20.
Tian
,
Y. B.
,
Zhong
,
Z. W.
,
Lai
,
S. T.
, and
Ang
,
Y. J.
,
2013
, “
Development of Fixed Abrasive Chemical Mechanical Polishing Process for Glass Disk Substrates
,”
Int. J. Adv. Manuf. Technol.
,
68
(5–8), pp.
993
1000
.
21.
Mali
,
H. S.
, and
Manna
,
A.
,
2012
, “
Simulation of Surface Generated During Abrasive Flow Finishing of Al/SiCp-MMC Using Neural Networks
,”
Int. J. Adv. Manuf. Technol.
,
61
(9–12), pp.
1263
1268
.
22.
Walia
,
R. S.
,
Shan
,
H. S.
, and
Kumar
,
P.
,
2006
, “
Parametric Optimization of Centrifugal Force Assisted Abrasive Flow Machining (CFAAFM) by the Taguchi Method
,”
J. Mater. Manuf. Process.
,
21
(
4–5
), pp.
375
382
.
23.
Walia
,
R. S.
,
Shan
,
H. S.
, and
Kumar
,
P.
,
2009
, “
Enhancing AFM Process Productivity Through Improved Fixturing
,”
Int. J. Adv. Manuf. Technol.
,
44
(7–8), pp.
700
709
.
24.
Kar
,
K. K.
,
Ravikumar
,
N. L.
,
Tailon
,
P. B.
,
Ramkumar
,
J.
, and
Sathiyamoorthy
,
D.
,
2009
, “
Performance Evaluation and Rheological Characterization of Newly Developed Butyl Rubber Based Media for Abrasive Flow Machining Process
,”
J. Mater. Process. Technol.
,
209
, pp.
2212
2221
.
25.
Jha
,
S.
, and
Jain
,
V. K.
,
2004
, “
Design and Development of the Magneto Rheological Abrasive Flow Finishing (MRAFF) Process
,”
Int. J. Mach. Tools Manuf.
,
44
(10), pp.
1019
1029
.
26.
Jain
,
V. K.
,
2009
, “
Magnetic Field Assisted Abrasive Based Micro-/Nano-Finishing
,”
J. Mater. Process. Technol.
,
209
(20), pp.
6022
6038
.
27.
Das
,
M.
,
Jain
,
V. K.
, and
Ghoshdastidar
,
P. S.
,
2012
, “
Nanofinishing of Flat Workpieces Using Rotational–Magnetorheological Abrasive Flow Finishing (R-MRAFF) Process
,”
Int. J. Adv. Manuf. Technol.
,
62
(1–4), pp.
405
420
.
28.
Chen
,
W.-C.
,
Wu
,
K.-L.
, and
Yan
,
B.-H.
,
2014
, “
A Study on the Application of Newly Developed Magneto-Elastic Abrasive to Improving the Surface Roughness of the Bore
,”
Int. J. Adv. Manuf. Technol.
,
73
(9–12), pp.
1557
1566
.
29.
Ravi Sankar
,
M.
,
Jain
,
V. K.
, and
Ramkumar
,
J.
,
2010
, “
Rotational Abrasive Flow Finishing (R-AFF) Process and Its Effects on Finished Surface Topography
,”
Int. J. Mach. Tools Manuf.
,
50
(
7
), pp.
637
650
.
30.
Yadav
,
S. P.
,
Waikar
,
R.
,
Pawade
,
R. S.
, and
Joshi
,
S. S.
,
2017
, “
Experimental Analysis of Orthogonal Micro-Machined Surface Features and Chip Morphology of AISI1215 Steel by Using EBSD Method
,”
Proceedings of the International Conference on Communication and Signal Processing 2016 (ICCASP 2016)
,
Raigad, India
,
Dec. 20–21
, pp.
304
310
.
31.
Stradling
,
A. W.
,
1993
, “
The Physics of Open-Gradient Dry Magnetic Separation
,”
Int. J. Miner. Process.
,
39
(1–2), pp.
1
18
.
32.
Kutzelnigg
,
W.
,
Fleischer
,
U.
, and
Schindler
,
M.
,
1990
, “The IGLO-Method: Ab-Initio Calculation and Interpretation of NMR Chemical Shifts and Magnetic Susceptibilities,”
Deuterium and Shift Calculation
,
23
, ed.,
Springer
,
Berlin, Heidelberg
.
33.
Rabinowicz
,
E.
,
Dunn
,
L. A.
, and
Russel
,
P. G.
,
1961
, “
A Study of Abrasive Wear Under Three-Body Conditions
,”
Wear
,
4
(5), pp.
345
355
.
34.
Yadav
,
S. P.
,
Saraf
,
A. R.
, and
Sadaiah
,
M.
,
2017
, “
Analysis of Undercut for SS304 in Photochemical Machining
,”
Proceedings of the International Conference on Communication and Signal Processing 2016 (ICCASP 2016)
,
Raigad
,
Dec. 20–21
, pp.
284
289
.
35.
Saraf
,
A. R.
, and
Sadaiah
,
M.
,
2017
, “
Photochemical Machining of a Novel Cardiovascular Stent
,”
Mater. Manuf. Processes
,
32
(
15
), pp.
1740
1746
.
36.
Jefimenko
,
O. D.
,
1966
,
Electricity and Magnetism
,
Meredith Publishing Company
,
New York
.
37.
Zohdi
,
T. I.
,
2015
, “An Introduction to the Finite-Element Method,”
Mechanical Engineers’ Handbook
, pp.
1
22
.
38.
Sukumar
,
N.
, and
Bolander
,
J. E.
,
2003
, “
Numerical Computation of Discrete Differential Operators on Non-Uniform Grids
,” Comput. Model. Eng. Sci,
4
(
6
), pp.
691
706
.
39.
María Jesús
,
M. G.
,
Raúl
,
I. M.
,
Emilio
,
G. R.
, and
Carlos
,
D. M.
,
2011
, “
Complex Polar Coordinates in Electromagnetics
,”
J. Electromagn. Waves Appl.
,
25
(
2–3
), pp.
389
398
.
You do not currently have access to this content.