Abstract

In the precision fabrication industries, ultrasonic vibration-assisted grinding is widely utilized for the finishing of “difficult-to-cut” materials due to its intermittent cutting mechanism and brittle-to-ductile mode machining. In this study, a two-dimensional finite element model (FEM) of single grit ultrasonic vibration-assisted dry grinding (UVADG) and conventional dry grinding (CDG) of AISI D2 steel has been developed, which taken into account the influence of longitudinal ultrasonic vibration on the workpiece with variable downfeed. The effects of ultrasonic vibration and downfeed on the chip formation mechanism, temperature field, grinding force, and equivalent stress and strain were evaluated by analytical and simulation methods. The results show that the formation of the grinding chips under UVADG is much shorter and straighter than CDG mode at all respective downfeed. The validation experiment compared the simulated and experimental grinding force in both grinding modes to verify the reliability of the FEM results. The validation results demonstrate that the FEM model can accurately describe the single grit UVADG and CDG grinding. At each downfeed, the CDG mode has generated a larger equivalent plastic strain than the UVADG mode, resulting in a higher thermomechanical load on the workpiece. According to the findings, UVADG mode has the least plastic damage on the ground surface, which may improve the surface integrity of the ground component.

References

1.
Tawakoli
,
T.
,
Hadad
,
M. J.
,
Sadeghi
,
M. H.
,
Daneshi
,
A.
,
Stöckert
,
S.
, and
Rasifard
,
A.
,
2009
, “
An Experimental Investigation of the Effects of Workpiece and Grinding Parameters on Minimum Quantity Lubrication-MQL Grinding
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
924
932
.
2.
Marinescu
,
I. D.
,
Hitchiner
,
M.
,
Uhlmann
,
E.
,
Rowe
,
W. B.
, and
Inasaki
,
I.
,
2016
,
Handbook of Machining With Grinding Wheels
,
CRC Press
,
Boca Raton, FL
, pp.
1
598
.
3.
Sinha
,
M. K.
,
Setti
,
D.
,
Ghosh
,
S.
, and
Venkateswara Rao
,
P.
,
2016
, “
An Investigation on Surface Burn During Grinding of Inconel 718
,”
J. Manuf. Process.
,
21
(
5
), pp.
124
133
.
4.
Chaudhari
,
A.
,
Yusufzai
,
M. Z. K.
, and
Vashista
,
M.
,
2021
, “
Grindability Study of Hard to Cut AISI D2 Steel Upon Ultrasonic Vibration-Assisted Dry Grinding
,”
Proc. Inst. Mech. Eng., Part E
,
235
, p.
095440892110516
.
5.
Wood
,
R. W.
, and
Loomis
,
A. L.
,
1927
, “
XXXVIII. The Physical and Biological Effects of High-Frequency Sound-Waves of Great Intensity
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
4
(
22
), pp.
417
436
.
6.
Wang
,
Y.
,
Kang
,
R.
,
Dong
,
Z.
,
Wang
,
X.
,
Huo
,
D.
, and
Zhang
,
X.
,
2021
, “
A Novel Method of Blade-Inclined Ultrasonic Cutting Nomex Honeycomb Core With Straight Blade
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041012
.
7.
Yin
,
S.
,
Dong
,
Z.
,
Bao
,
Y.
,
Kang
,
R.
,
Du
,
W.
,
Pan
,
Y.
, and
Jin
,
Z.
,
2021
, “
Development and Optimization of Ultrasonic Elliptical Vibration Cutting Device Based on Single Excitation
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081005
.
8.
Lv
,
D.
,
Liu
,
D.
,
Chen
,
G.
,
Song
,
L.
,
Yan
,
C.
,
Wu
,
X.
, and
Zhu
,
Y.
,
2020
, “
Formation Mechanisms of Exit-Chippings in Rotary Ultrasonic Drilling and Conventional Drilling of Glass BK7
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011004
.
9.
Ning
,
F.
,
Jiang
,
D.
,
Liu
,
Z.
,
Wang
,
H.
, and
Cong
,
W.
,
2021
, “
Ultrasonic Frequency Effects on the Melt Pool Formation, Porosity, and Thermal-Dependent Property of Inconel 718 Fabricated by Ultrasonic Vibration-Assisted Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
051009
.
10.
Song
,
H.
,
Li
,
M.
,
Wang
,
M.
,
Wu
,
B.
,
Liu
,
Z.
,
Ding
,
H.
, and
Liu
,
W.
,
2021
, “
Preliminary Experimental Study of Warm Ultrasonic Impact-Assisted Laser Metal Deposition
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
074501
.
11.
Ituarte
,
I. F.
,
Salmi
,
M.
,
Papula
,
S.
,
Huuki
,
J.
,
Hemming
,
B.
,
Coatanea
,
E.
,
Nurmi
,
S.
, and
Virkkunen
,
I.
,
2020
, “
Surface Modification of Additively Manufactured 18% Nickel Maraging Steel by Ultrasonic Vibration-Assisted Ball Burnishing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071008
.
12.
Zhao
,
J.
,
Liu
,
Z.
,
Wang
,
B.
,
Cai
,
Y.
, and
Song
,
Q.
,
2020
, “
Analytical Prediction and Experimental Investigation of Burnishing Force in Rotary Ultrasonic Roller Burnishing Titanium Alloy Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031004
.
13.
Liu
,
Z.
,
Wu
,
B.
,
Xu
,
R.
, and
Zhao
,
K.
,
2021
, “
Grooving of Metals by High-Intensity Focused Ultrasound-Assisted Water-Confined Laser Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
091012
.
14.
Lee
,
T. H.
,
Fan
,
H.-T.
,
Li
,
Y.
,
Shriver
,
D.
,
Arinez
,
J.
,
Xiao
,
G.
, and
Banu
,
M.
,
2020
, “
Enhanced Performance of Ultrasonic Welding of Short Carbon Fiber Polymer Composites Through Control of Morphological Parameters
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011009
.
15.
Zhang
,
J.
,
Long
,
Z.
,
Wang
,
C.
,
Zhao
,
H.
, and
Li
,
Y.
,
2020
, “
Compensation Modeling and Optimization on Contactless Rotary Transformer in Rotary Ultrasonic Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101001
.
16.
Tawakoli
,
T.
, and
Azarhoushang
,
B.
,
2008
, “
Influence of Ultrasonic Vibrations on Dry Grinding of Soft Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
14
), pp.
1585
1591
.
17.
Yang
,
Z.
,
Zhu
,
L.
,
Zhang
,
G.
,
Ni
,
C.
, and
Lin
,
B.
,
2020
, “
Review of Ultrasonic Vibration-Assisted Machining in Advanced Materials
,”
Int. J. Mach. Tools Manuf.
,
156
, p.
103594
.
18.
Guo
,
C.
,
Shi
,
Z.
,
Mullany
,
B.
,
Linke
,
B.
,
Yamaguchi
,
H.
,
Chaudhari
,
R.
,
Hucker
,
S.
, and
Shih
,
A.
,
2020
, “
Recent Advancements in Machining With Abrasives
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110810
.
19.
Ding
,
K.
,
Fu
,
Y.
,
Su
,
H.
,
Gong
,
X.
, and
Wu
,
K.
,
2014
, “
Wear of Diamond Grinding Wheel in Ultrasonic Vibration-Assisted Grinding of Silicon Carbide
,”
Int. J. Adv. Manuf. Technol.
,
71
(
9
), pp.
1929
1938
.
20.
Awale
,
A. S.
,
Srivastava
,
A.
,
Vashista
,
M.
, and
Khan Yusufzai
,
M. Z.
,
2018
, “
Influence of Minimum Quantity Lubrication on Surface Integrity of Ground Hardened H13 Hot Die Steel
,”
Int. J. Adv. Manuf. Technol.
,
100
(
1
), pp.
983
997
.
21.
Chaudhari
,
A.
,
Sharma
,
A.
,
Awale
,
A. S.
,
Yusufzai
,
M. Z. K.
, and
Vashista
,
M.
,
2021
, “
Effect of Ultrasonic Vibration Assisted Dry Grinding on Hysteresis Loop Characteristics of AISI D2 Tool Steel
,”
Sadhana - Acad. Proc. Eng. Sci.
,
46
(
4
), pp.
1
12
.
22.
Bhaduri
,
D.
,
Soo
,
S. L.
,
Aspinwall
,
D. K.
,
Novovic
,
D.
,
Harden
,
P.
,
Bohr
,
S.
, and
Martin
,
D.
,
2012
, “
A Study on Ultrasonic Assisted Creep Feed Grinding of Nickel Based Superalloys
,”
Procedia CIRP
,
1
(
1
), pp.
359
364
.
23.
Tawakoli
,
T.
,
Azarhoushang
,
B.
, and
Rabiey
,
M.
,
2008
, “
Effects of Ultrasonic Vibration on Grinding of 100Cr6
,”
Int. J. Mechatron. Manuf. Syst.
,
1
(
4
), pp.
332
342
.
24.
Sun
,
G.
,
Zhao
,
L.
,
Ma
,
Z.
, and
Zhao
,
Q.
,
2018
, “
Force Prediction Model Considering Material Removal Mechanism for Axial Ultrasonic Vibration-Assisted Peripheral Grinding of Zerodur
,”
Int. J. Adv. Manuf. Technol.
,
98
(
9–12
), pp.
2775
2789
.
25.
Paknejad
,
M.
,
Abdullah
,
A.
, and
Azarhoushang
,
B.
,
2017
, “
Effects of High Power Ultrasonic Vibration on Temperature Distribution of Workpiece in Dry Creep Feed up Grinding
,”
Ultrason. Sonochem.
,
39
(
2
), pp.
392
402
.
26.
Li
,
D.
,
Tang
,
J.
,
Chen
,
H.
, and
Shao
,
W.
,
2019
, “
Study on Grinding Force Model in Ultrasonic Vibration-Assisted Grinding of Alloy Structural Steel
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5–8
), pp.
1467
1479
.
27.
Abdullah
,
A.
,
Sotoodezadeh
,
M.
,
Abedini
,
R.
, and
Fartashvand
,
V.
,
2013
, “
Experimental Study on Ultrasonic Use in Dry Creep-Feed Up-grinding of Aluminum 7075 and Steel X210Cr12
,”
Int. J. Precis. Eng. Manuf.
,
14
(
2
), pp.
191
198
.
28.
Cao
,
J.
,
Wu
,
Y.
,
Li
,
J.
, and
Zhang
,
Q.
,
2016
, “
Study on the Material Removal Process in Ultrasonic-Assisted Grinding of SiC Ceramics Using Smooth Particle Hydrodynamic (SPH) Method
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
985
994
.
29.
Öpöz
,
T. T.
, and
Chen
,
X.
,
2012
, “
Experimental Investigation of Material Removal Mechanism in Single Grit Grinding
,”
Int. J. Mach. Tools Manuf.
,
63
, pp.
32
40
.
30.
Zhao
,
J. Y.
,
Fu
,
Y. C.
,
Xu
,
J. H.
,
Tian
,
L.
, and
Yang
,
L.
,
2014
, “
Forces and Chip Morphology of Nickel-Based Superalloy Inconel 718 During High Speed Grinding With Single Grain
,”
Key Eng. Mater.
,
589–590
, pp.
209
214
.
31.
Feng
,
B. F.
,
Cai
,
G. Q.
, and
Sun
,
X. L.
,
2006
, “
Groove, Chip and Force Formation in Single Grain High-Speed Grinding
,”
Key Eng. Mater.
,
304–305
, pp.
196
200
.
32.
Fu
,
D.
,
Ding
,
W.
,
Miao
,
Q.
, and
Xu
,
J.
,
2017
, “
Simulation Research on the Grinding Forces and Stresses Distribution in Single-Grain Surface Grinding of Ti-6Al-4V Alloy When Considering the Actual Cutting-Depth Variation
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3591
3602
.
33.
Sinha
,
M. K.
,
Ghosh
,
S.
, and
Paruchuri
,
V. R.
,
2019
, “
Modelling of Specific Grinding Energy for Inconel 718 Superalloy
,”
Proc. Inst. Mech. Eng. B
,
233
(
2
), pp.
443
460
.
34.
Liu
,
G.
,
Dang
,
J.
,
Chen
,
Y.
,
Dong
,
D.
, and
An
,
Q.
,
2019
, “
Numerical and Experimental Investigation on Grinding-Induced Exit Burr Formation
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
2331
2346
.
35.
Sagar
,
C. K.
,
Priyadarshini
,
A.
,
Gupta
,
A. K.
,
Kumar
,
T.
, and
Saxena
,
S.
,
2021
, “
An Alternate Approach to SHPB Tests to Compute Johnson-Cook Material Model Constants for 97 WHA at High Strain Rates and Elevated Temperatures Using Machining Tests
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), p.
021004
.
36.
Dai
,
J.
,
Ding
,
W.
,
Zhang
,
L.
,
Xu
,
J.
, and
Su
,
H.
,
2015
, “
Understanding the Effects of Grinding Speed and Undeformed Chip Thickness on the Chip Formation in High-Speed Grinding
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5
), pp.
995
1005
.
37.
Brinksmeier
,
E.
,
Aurich
,
J. C.
,
Govekar
,
E.
,
Heinzel
,
C.
,
Hoffmeister
,
H.-W.
,
Klocke
,
F.
,
Peters
,
J.
, et al
,
2006
, “
Advances in Modeling and Simulation of Grinding Processes
,”
CIRP Ann.
,
55
(
2
), pp.
667
696
.
38.
Tönshoff
,
H. K.
,
Peters
,
J.
,
Inasaki
,
I.
, and
Paul
,
T.
,
1992
, “
Modelling and Simulation of Grinding Processes
,”
CIRP Ann.
,
41
(
2
), pp.
677
688
.
39.
Öpöz
,
T.
, and
Chen
,
X.
,
2010
, “
Numerical Simulation of Single Grit Grinding
,”
Proceeding of the 16th International Conference on Automation & Computing
,
Birmingham, UK
,
Sept. 11
.
40.
Farhadi
,
A.
,
Abdullah
,
A.
,
Zarkoob
,
J.
, and
Pak
,
A.
,
2010
, “
Analytical and Numerical Simulation of Ultrasonic Assisted Grinding
,”
Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
,
Istanbul, Turkey
,
July 12–14
, Vol. 4, pp.
763
768
.
41.
Khan
,
A. M.
,
Jamil
,
M.
,
Mia
,
M.
,
Pimenov
,
D. Y.
,
Gasiyarov
,
V. R.
,
Gupta
,
M. K.
, and
He
,
N.
,
2018
, “
Multi-objective Optimization for Grinding of AISI D2 Steel With Al2O3 Wheel Under MQL
,”
Materials
,
11
(
11
), p.
2269
.
42.
Ribeiro
,
F. S.
,
Lopes
,
J. C.
,
Garcia
,
M. V.
,
de Angelo Sanchez
,
L. E.
,
de Mello
,
H. J.
,
de Aguiar
,
P. R.
, and
Bianchi
,
E. C.
,
2020
, “
Grinding Assessment of Workpieces with Different Interrupted Geometries Using Aluminum Oxide Wheel With Vitrified Bond
,”
Int. J. Adv. Manuf. Technol.
,
108
(
3
), pp.
931
941
.
43.
Sinha
,
M. K.
,
Madarkar
,
R.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2017
, “
Application of Eco-friendly Nanofluids During Grinding of Inconel 718 Through Small Quantity Lubrication
,”
J. Cleaner Prod.
,
141
, pp.
1359
1375
.
44.
Moretti
,
G. B.
,
Ávila
,
B. N.
,
Lopes
,
J. C.
,
de Moraes
,
D. L.
,
Garcia
,
M. V.
,
Ribeiro
,
F. S. F.
,
de Mello
,
H. J.
,
Sanchez
,
L. E. D. A.
,
Aguiar
,
P. R.
, and
Bianchi
,
E. C.
,
2021
, “
Industrial Manufacturing Linked to the Mechanical and Economic Viewpoint of the Mold Steel Grinding Process Using Aluminum Oxide Wheel
,”
Int. J. Adv. Manuf. Technol.
,
117
(
9–10
), pp.
2655
2666
.
45.
Yan
,
L.
,
Rong
,
Y. M.
,
Jiang
,
F.
, and
Zhou
,
Z. X.
,
2010
, “
Three-Dimension Surface Characterization of Grinding Wheel Using White Light Interferometer
,”
Int. J. Adv. Manuf. Technol.
,
55
(
1
), pp.
133
141
.
46.
Nie
,
Z.
,
Wang
,
G.
,
Jiang
,
F.
,
Lin
,
Y.
, and
Rong
,
Y.
,
2018
, “
Investigation of Modeling on Single Grit Grinding for Martensitic Stainless Steel
,”
J. Cent. South Univ.
,
25
(
8
), pp.
1862
1869
.
47.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
48.
Becze
,
E. C.
,
2002
, “
A Thermo-Mechanical Force Model for Machining Hardened Steel
,”
Doctoral dissertation
,
McMaster University
,
Hamilton, Ontario, Canada
.
49.
Wang
,
F.
,
Tao
,
Q.
,
Xiao
,
L.
,
Hu
,
J.
, and
Xu
,
L.
,
2018
, “
Simulation and Analysis of Serrated Chip Formation in Cutting Process of Hardened Steel Considering Ploughing-Effect
,”
J. Mech. Sci. Technol.
,
32
(
5
), pp.
2029
2037
.
50.
Özel
,
T.
,
2009
, “
Computational Modelling of 3D Turning: Influence of Edge Micro-geometry on Forces, Stresses, Friction and Tool Wear in PcBN Tooling
,”
J. Mater. Process. Technol.
,
209
(
11
), pp.
5167
5177
.
51.
Vyas
,
A.
, and
Shaw
,
M. C.
,
1999
, “
Mechanics of Saw-Tooth Chip Formation in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
163
172
.
52.
Chaudhari
,
A.
,
Awale
,
A. S.
, and
Chakrabarti
,
A. K.
,
2019
, “
Surface Integrity Characterization of Austenitic, Martensitic and Ferritic Stainless Steel Under Different Grinding Process
,”
Mater. Res. Express
,
6
(
11
), p.
1165c9
.
53.
Li
,
S.
,
Wu
,
Y.
,
Fujimoto
,
M.
, and
Nomura
,
M.
,
2016
, “
Improving the Working Surface Condition of Electroplated Cubic Boron Nitride Grinding Quill in Surface Grinding of Inconel 718 by the Assistance of Ultrasonic Vibration
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071008
.
54.
Rowe
,
W. B.
,
Morgan
,
M. N.
,
Batako
,
A.
, and
Jin
,
T.
,
2003
, “
Energy And Temperature Analysis in Grinding
,”
WIT Trans. Eng. Sci.
,
44
, p.
588
.
55.
Kato
,
T.
, and
Fujii
,
H.
,
2000
, “
Temperature Measurement of Workpieces in Conventional Surface Grinding
,”
ASME J. Manuf. Sci. Eng.
,
122
(
2
), pp.
297
303
.
56.
Zhang
,
L.
, and
Brian Rowe
,
W.
,
2020
, “
Study of Convective Heat Transfer in Grinding Applied to Tool Carbide
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021001
.
57.
Zhang
,
L.
, and
Brian Rowe
,
W.
,
2021
, “
Fluid Convection Models for Low-Temperature Grinding and Effect of Fluid Warming
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), p.
021010
.
58.
Nath
,
C.
, and
Rahman
,
M.
,
2008
, “
Effect of Machining Parameters in Ultrasonic Vibration Cutting
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
965
974
.
59.
Dieter
,
G.
, and
Bacon
,
D.
,
1976
,
Mechanical Metallurgy
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.