Abstract

Aluminum alloys are preferred in most industries due to the functional properties they provide. It is known that alloys that can be processed with heat treatments show better mechanical properties. 7xxx series alloys can be processed via heat treatments and are often used in environmental conditions such as extreme temperatures and corrosive environments. Corrosive sensitivities such as stress corrosion cracking can be observed with the effect of working conditions. It is known that retrogression and re-aging heat treatment provide corrosion resistance and decrease the stress corrosion cracking velocity. The purpose of this study is to examine the tensile behavior of annealed and retrogression-re-aging heat-treated AA7075 alloys at elevated temperatures. The mechanical properties of the alloys were investigated by conducting tensile tests at room temperature, 100, 200, and 300 °C. Hardness tests were performed at room temperature on the samples that were taken from tensile test specimens after tensile tests. The potential effects of test temperature on mechanical and microstructural properties were examined. The annealed and RRA heat-treated alloys were characterized by scanning electron microscope and X-ray diffraction analysis. As a result, an increase in strength and hardness of the retrogression-re-aging treated AA7075 alloys was observed. The ductility of the retrogression-re-aging treated alloy was lower compared to the annealed AA7075 alloy. Fracture surface examinations showed that there was a semi-ductile fracture below 200 °C and ductile fracture at temperatures of 200 and 300 °C. Ductility was observed to increase with increasing temperature.

References

1.
Cassada
,
W.
,
Liu
,
J.
, and
Staley
,
J.
,
2002
, “
Aluminum Alloys for Aircraft Structures
,”
Adv. Mater. Process.
,
160
(
12
), pp.
27
29
.
2.
Chen
,
S.
,
Gu
,
R.
,
Liu
,
Q.
,
Wang
,
W.
, and
Wei
,
X.
,
2020
, “
Experimental and Numerical Investigation on Strengthening Behavior of 7075 Aluminum Alloy Sheets in Hot Forming–Quenching Integrated Process
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061005
.
3.
Rometsch
,
P. A.
,
Zhang
,
Y.
, and
Knight
,
S.
,
2017
, “
Heat Treatment of 7xxx Series Aluminium Alloys—Some Recent Developments
,”
Trans. Nonferrous Met. Soc. China (Engl. Ed.)
,
24
(
7
), pp.
2003
2017
.
4.
Wang
,
Y.
, and
Jing
,
S.
,
2020
, “
Effect of Post Heat Treatment on the Microstructure and Tensile Properties of Nano TiC Particulate Reinforced Inconel 718 by Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
051004
.
5.
Simsek
,
I.
,
Simsek
,
D.
,
Ozyurek
,
D.
, and
Tekeli
,
S.
,
2019
, “
The Effect of the Aging Time on Microstructure and Mechanical Properties of the AA7075 Alloy After T6 Heat Treatment
,”
Metallofiz i Noveishie Tekhnologii
,
41
(
6
), pp.
817
824
.
6.
Tekeli
,
S.
,
Simsek
,
I.
,
Simsek
,
D.
, and
Ozyurek
,
D.
,
2019
, “
Effects of Different Solid Solution Temperatures on Microstructure and Mechanical Properties of the AA7075 Alloy After T6 Heat Treatment
,”
High Temp. Mater. Process.
,
38
, pp.
892
896
.
7.
Totten,
G. E.
, ed.,
1990
, “
ASM Handbook
,” Heat Treating of Aluminum,
ASM International
, Vol.
4
, pp.
841
879
.
8.
Berg
,
L. K.
,
Gjoønnes
,
J.
,
Hansen
,
V.
,
Li
,
X. Z.
,
Knutson-Wedel
,
M.
,
Waterloo
,
G.
,
Schryvers
,
D.
, and
Wallenberg
,
L. R.
,
2001
, “
GP-zones in Al-Zn-Mg Alloys and Their Role in Artificial Aging
,”
Acta Mater.
,
49
(
17
), pp.
3443
3451
.
9.
Li
,
J. F.
,
Peng
,
Z. W.
,
Li
,
C. X.
,
Jia
,
Z. Q.
,
Chen
,
W. J.
, and
Zheng
,
Z. Q.
,
2008
, “
Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy with Various Aging Treatments
,”
Trans. Nonferrous Met. Soc. China (Engl. Ed.)
,
18
(
4
), pp.
755
762
.
10.
Cina
,
B.
,
1974
, “
Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking
,” US patent No. 3,856,584.
11.
Park
,
J. K.
,
1988
, “
Influence of Retrogression and Reaging Treatments on the Strength and Stress Corrosion Resistance of Aluminium Alloy 7075-T6
,”
Mater. Sci. Eng.
,
103
(
2
), pp.
223
231
.
12.
Park
,
J. K.
, and
Ardell
,
A. J.
,
1984
, “
Effect of Retrogression and Reaging Treatments on the Microstructure of Ai-7075-T651
,”
Metall. Trans. A
,
15
(
8
), pp.
1531
1543
.
13.
Fakioglu
,
A.
,
Özyürek
,
D.
, and
Yilmaz
,
R.
,
2013
, “
Effects of Different Heat Treatment Conditions on Fatigue Behavior of AA7075 Alloy
,”
High Temp. Mater. Process.
,
32
(
4
), pp.
345
351
.
14.
Viana
,
F.
,
Pinto
,
A. M. P.
,
Santos
,
H. M. C.
, and
Lopes
,
A. B.
,
1999
, “
Retrogression and Re-Ageing of 7075 Aluminium Alloy: Microstructural Characterization
,”
J. Mater. Process. Technol.
,
92–93
, pp.
54
59
.
15.
Li
,
G. F.
,
Zhang
,
X. M.
,
Li
,
P. H.
, and
You
,
J. H.
,
2010
, “
Effects of Retrogression Heating Rate on Microstructures and Mechanical Properties of Aluminum Alloy 7050
,”
Trans. Nonferrous Met. Soc. China (Engl. Ed.)
,
20
(
6
), pp.
935
941
.
16.
Ozer
,
G.
, and
Karaaslan
,
A.
,
2017
, “
Properties of AA7075 Aluminum Alloy in Aging and Retrogression and Reaging Process
,”
Trans. Nonferrous Met. Soc. China (Engl. Ed.)
,
27
(
11
), pp.
2357
2362
.
17.
Cerri
,
E.
,
Evangelista
,
E.
,
Forcellese
,
A.
, and
McQueen
,
H. J.
,
1995
, “
Comparative hot Workability of 7012 and 7075 Alloys After Different Pretreatments
,”
Mater. Sci. Eng. A
,
197
(
2
), pp.
181
198
.
18.
Leo
,
P.
,
McQueen
,
H. J.
,
Cerri
,
E.
, and
Spigarelli
,
S.
,
2012
, “Thermo-Mechanical Treatment,”
ICAA13
,
H.
Weiland
,
A. D.
Rollett
, and
W. A.
Cassada
, eds.,
Springer
,
Pittsburgh, PA
, pp.
1635
1641
.
19.
Taheri-Mandarjani
,
M.
,
Zarei-Hanzaki
,
A.
, and
Abedi
,
H. R.
,
2015
, “
Hot Ductility Behavior of an Extruded 7075 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
637
, pp.
107
122
.
20.
Wang
,
L.
,
Yu
,
H.
,
Lee
,
Y.
, and
Kim
,
H. W.
,
2015
, “
Hot Tensile Deformation Behavior of Twin Roll Casted 7075 Aluminum Alloy
,”
Met. Mater. Int.
,
21
(
5
), pp.
832
841
.
21.
Gupta
,
R. K.
,
Anil Kumar
,
V.
,
Sarath Krishnan
,
A.
, and
Niteshraj
,
J.
,
2019
, “
Hot Deformation Behavior of Aluminum Alloys AA7010 and AA7075
,”
J. Mater. Eng. Perform.
,
28
(
8
), pp.
5021
5036
.
22.
Wang
,
L.
,
Yu
,
H.
,
Lee
,
Y. S.
,
Kim
,
M. S.
, and
Kim
,
H. W.
,
2016
, “
Effect of Microstructure on hot Tensile Deformation Behavior of 7075 Alloy Sheet Fabricated by Twin Roll Casting
,”
Mater. Sci. Eng. A
,
652
, pp.
221
230
.
23.
Liu
,
D.
,
Atkinson
,
H. V.
,
Kapranos
,
P.
,
Jirattiticharoean
,
W.
, and
Jones
,
H.
,
2003
, “
Microstructural Evolution and Tensile Mechanical Properties of Thixoformed High Performance Aluminium Alloys
,”
Mater. Sci. Eng. A
,
361
(
1–2
), pp.
213
224
.
24.
Zou
,
X. L.
,
Yan
,
H.
, and
Chen
,
X. H.
,
2017
, “
Evolution of Second Phases and Mechanical Properties of 7075 Al Alloy Processed by Solution Heat Treatment
,”
Trans. Nonferrous Met. Soc. China (Engl. Ed.)
,
27
(
10
), pp.
2146
2155
.
25.
Zhang
,
H. B.
,
Wang
,
B.
,
Zhang
,
Y. T.
,
Li
,
Y.
,
He
,
J. L.
, and
Zhang
,
Y. F.
,
2020
, “
Influence of Aging Treatment on the Microstructure and Mechanical Properties of CNTs/7075 Al Composites
,”
J. Alloys Compd.
,
814
, p.
152357
.
26.
Jung
,
S. H.
,
Lee
,
J.
, and
Kawasaki
,
M.
,
2018
, “
Effects of pre-Strain on the Aging Behavior of Al 7075 Alloy for hot-Stamping Capability
,”
Metals (Basel)
,
8
(
2
), p.
137
.
27.
Ferrer
,
C. P.
,
Koul
,
M. G.
,
Connolly
,
B. J.
, and
Moran
,
A. L.
,
2003
, “
Improvements in Strength and Stress Corrosion Cracking Properties in Aluminum Alloy 7075 via low-Temperature Retrogression and Re-Aging Heat Treatments
,”
Corrosion
,
59
(
6
), pp.
520
528
.
28.
Yildirim
,
M.
,
Özyürek
,
D.
, and
Gürü
,
M.
,
2016
, “
The Effects of Precipitate Size on the Hardness and Wear Behaviors of Aged 7075 Aluminum Alloys Produced by Powder Metallurgy Route
,”
Arabian J. Sci. Eng.
,
41
(
11
), pp.
4273
4281
.
29.
Zhou
,
M.
,
Lin
,
Y. C.
,
Deng
,
J.
, and
Jiang
,
Y. Q.
,
2014
, “
Hot Tensile Deformation Behaviors and Constitutive Model of an Al-Zn-Mg-Cu Alloy
,”
Mater. Des.
,
59
, pp.
141
150
.
30.
Moffatt
,
W. G.
,
Pearsall
,
G. W.
, and
Wulff
,
J.
,
1967
,
The Structure and Properties of Materials, Structure
,
Wiley
,
New York
. ISBN: 9780471612650
31.
Lee
,
W. S.
,
Sue
,
W. C.
,
Lin
,
C. F.
, and
Wu
,
C. J.
,
2000
, “
The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy
,”
J. Mater. Process. Technol.
,
100
(
1–3
), pp.
116
122
.
32.
Kobayashi
,
T.
,
2000
, “
Strength and Fracture of Aluminum Alloys
,”
Mater. Sci. Eng. A
,
286
(
2
), pp.
333
341
.
33.
Rout
,
P. K.
,
Ghosh
,
M. M.
, and
Ghosh
,
K. S.
,
2015
, “
Microstructural, Mechanical and Electrochemical Behaviour of a 7017 Al-Zn-Mg Alloy of Different Tempers
,”
Mater. Charact.
,
104
, pp.
49
60
.
34.
Maire
,
E.
,
Zhou
,
S.
,
Adrien
,
J.
, and
Dimichiel
,
M.
,
2011
, “
Damage Quantification in Aluminium Alloys Using in Situ Tensile Tests in X-ray Tomography
,”
Eng. Fract. Mech.
,
78
(
15
), pp.
2679
2690
.
35.
Malarvizhi
,
S.
, and
Balasubramanian
,
V.
,
2011
, “
Effect of Welding Processes on AA2219 Aluminium Alloy Joint Properties
,”
Trans. Nonferrous Met. Soc. China (Engl. Ed.)
,
21
(
5
), pp.
962
973
.
36.
Acer
,
E.
,
Çadirli
,
E.
,
Erol
,
H.
,
Kirindi
,
T.
, and
Gündüz
,
M.
,
2016
, “
Effect of Heat Treatment on the Microstructures and Mechanical Properties of Al-5.5Zn-2.5Mg Alloy
,”
Mater. Sci. Eng. A
,
662
, pp.
144
156
.
37.
Liu
,
G.
,
Zhang
,
G. J.
,
Ding
,
X. D.
,
Sun
,
J.
, and
Chen
,
K. H.
,
2003
, “
Dependence of Fracture Toughness on Multiscale Second Phase Particles in High Strength Al Alloys
,”
Mater. Sci. Technol.
,
19
(
7
), pp.
887
896
.
You do not currently have access to this content.