Abstract

Extrusion-based three-dimensional (3D) bio-printing deposits cell-laden bio-ink with high spatial resolution and may offer living tissue regeneration. Due to the biocompatibility, very low cytotoxicity, and high-water content, natural hydrogels are commonly considered as the cell-laden bio-ink for scaffold fabrication. However, due to the low mechanical integrity, a large-scale scaffold (>10 layers) with intricate architecture is a challenge. In this paper, we developed and characterized a novel bio-ink consisting of alginate, carboxymethyl cellulose (CMC), and 2,2,6,6 tetramethyl-1-piperidinyloxy (TEMPO)-mediated nanofibrillated cellulose (TO-NFC) for bio-printing applications. The potential of cellulose derivatives in terms of rheological property to satisfy scaffold architecture and cell viability is explored with a relatively small amount of solid content (<5%). By combining alginate, CMC, and TO-NFC as a hybrid hydrogel, we design to overcome their individual challenges as bio-ink. At the design stage, we have considered two main characteristics: printability and shape fidelity with quantitative indices following their rheological characteristics. Our proposed hydrogel blend (5% solid content) demonstrates a 0% collapse rate for 3-mm pillar distance and 25% fusion rate for 5 mm × 5 mm pore size which can ensure shape fidelity. We fabricated 42 layers and a 9-mm tall scaffold structure with relatively lower applied pressure (10 psi). The proposed hybrid hydrogel is used to prepare bio-ink encapsulating cells, and cell viability is measured as 90% after 10 days of incubation.

References

1.
Ouyang
,
L.
,
Highley
,
C. B.
,
Rodell
,
C. B.
,
Sun
,
W.
, and
Burdick
,
J. A.
,
2016
, “
3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels With Secondary Cross-Linking
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1743
1751
. 10.1021/acsbiomaterials.6b00158
2.
Malda
,
J.
,
Visser
,
J.
,
Melchels
,
F. P.
,
Jüngst
,
T.
,
Hennink
,
W. E.
,
Dhert
,
W. J.
,
Groll
,
J.
, and
Hutmacher
,
D. W.
,
2013
, “
25th Anniversary Article: Engineering Hydrogels for Biofabrication
,”
Adv. Mater.
,
25
(
36
), pp.
5011
5028
. 10.1002/adma.201302042
3.
O'brien
,
F. J.
,
2011
, “
Biomaterials & Scaffolds for Tissue Engineering
,”
Mater. today
,
14
(
3
), pp.
88
95
. 10.1016/S1369-7021(11)70058-X
4.
Kong
,
H.-J.
,
Lee
,
K. Y.
, and
Mooney
,
D. J.
,
2002
, “
Decoupling the Dependence of Rheological/Mechanical Properties of Hydrogels From Solids Concentration
,”
Polymer
,
43
(
23
), pp.
6239
6246
. 10.1016/S0032-3861(02)00559-1
5.
Dababneh
,
A. B.
, and
Ozbolat
,
I. T.
,
2014
, “
Bioprinting Technology: A Current State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061016
. 10.1115/1.4028512
6.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
,
2005
, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
,
26
(
1
), pp.
93
99
. 10.1016/j.biomaterials.2004.04.011
7.
Wu
,
D.
, and
Xu
,
C.
,
2018
, “
Predictive Modeling of Droplet Formation Processes in Inkjet-Based Bioprinting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101007
. 10.1115/1.4040619
8.
Chung
,
J. H.
,
Naficy
,
S.
,
Yue
,
Z.
,
Kapsa
,
R.
,
Quigley
,
A.
,
Moulton
,
S. E.
, and
Wallace
,
G. G.
,
2013
, “
Bio-ink Properties and Printability for Extrusion Printing Living Cells
,”
Biomater. Sci.
,
1
(
7
), pp.
763
773
. 10.1039/c3bm00012e
9.
Jessop
,
Z. M.
,
Al-Sabah
,
A.
,
Gao
,
N.
,
Kyle
,
S.
,
Thomas
,
B.
,
Badiei
,
N.
,
Hawkins
,
K.
, and
Whitaker
,
I. S.
,
2019
, “
Printability of Pulp Derived Crystal, Fibril and Blend Nanocellulose-Alginate Bioinks for Extrusion 3D Bioprinting
,”
Biofabrication
,
11
(
4
), p.
045006
. 10.1088/1758-5090/ab0631
10.
Devillard
,
R.
,
Pagès
,
E.
,
Correa
,
M. M.
,
Kériquel
,
V.
,
Rémy
,
M.
,
Kalisky
,
J.
,
Ali
,
M.
,
Guillotin
,
B.
, and
Guillemot
,
F.
,
2014
, “Chapter 9: Cell Patterning by Laser-Assisted Bioprinting,”
Methods Cell Biology
,
M.
Piel
, and
M.
Théry
, eds.,
Elsevier
,
Oxford, UK
, pp.
159
174
.
11.
Guillotin
,
B.
,
Souquet
,
A.
,
Catros
,
S.
,
Duocastella
,
M.
,
Pippenger
,
B.
,
Bellance
,
S.
,
Bareille
,
R.
,
Rémy
,
M.
,
Bordenave
,
L.
,
Amédée
,
J.
, and
Guillemot
,
F.
,
2010
, “
Laser Assisted Bioprinting of Engineered Tissue With High Cell Density and Microscale Organization
,”
Biomaterials
,
31
(
28
), pp.
7250
7256
. 10.1016/j.biomaterials.2010.05.055
12.
Li
,
Z.
,
Huang
,
S.
,
Liu
,
Y.
,
Yao
,
B.
,
Hu
,
T.
,
Shi
,
H.
,
Xie
,
J.
, and
Fu
,
X.
,
2018
, “
Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior
,”
Sci. Rep.
,
8
(
1
), p.
8020
. 10.1038/s41598-018-26407-3
13.
Morgan
,
F. L. C.
,
Moroni
,
L.
, and
Baker
,
M. B.
, “
Dynamic Bioinks to Advance Bioprinting
,”
Adv Healthc Mater
,
9
(
15
), p.
1901798
. 10.1002/adhm.201901798
14.
Klebe
,
R. J.
,
1988
, “
Cytoscribing: a Method for Micropositioning Cells and the Construction of two- and Three-Dimensional Synthetic Tissues
,”
Exp. Cell Res.
,
179
(
2
), pp.
362
373
. 10.1016/0014-4827(88)90275-3
15.
Diamantides
,
N.
,
Wang
,
L.
,
Pruiksma
,
T.
,
Siemiatkoski
,
J.
,
Dugopolski
,
C.
,
Shortkroff
,
S.
,
Kennedy
,
S.
, and
Bonassar
,
L. J.
,
2017
, “
Correlating Rheological Properties and Printability of Collagen Bioinks: The Effects of Riboflavin Photocrosslinking and pH
,”
Biofabrication
,
9
(
3
), p.
034102
. 10.1088/1758-5090/aa780f
16.
Sun
,
J.
, and
Tan
,
H.
,
2013
, “
Alginate-Based Biomaterials for Regenerative Medicine Applications
,”
Materials
,
6
(
4
), pp.
1285
1309
. 10.3390/ma6041285
17.
Lewis
,
P.
, and
Shah
,
R. N.
,
2016
, “
3D-Printed Gelatin Scaffolds of Differing Pore Size and Geometry Modulate Hepatocyte Function and Gene Expression
,”
10th World Biomaterials Congress
,
Montréal, Canada
.
18.
Zhang
,
T.
,
Yan
,
Y.
,
Wang
,
X.
,
Xiong
,
Z.
,
Lin
,
F.
,
Wu
,
R.
, and
Zhang
,
R.
,
2007
, “
Three-Dimensional Gelatin and Gelatin/Hyaluronan Hydrogel Structures for Traumatic Brain Injury
,”
J. Bioact. Compat. Polym.
,
22
(
1
), pp.
19
29
. 10.1177/0883911506074025
19.
Hunt
,
N. C.
,
Shelton
,
R. M.
,
Henderson
,
D. J.
, and
Grover
,
L. M.
,
2012
, “
Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor
,”
Tissue Eng., Part A
,
19
(
7–8
), pp.
905
914
. 10.1089/ten.tea.2012.0197
20.
Filardo
,
G.
,
Petretta
,
M.
,
Cavallo
,
C.
,
Roseti
,
L.
,
Durante
,
S.
,
Albisinni
,
U.
, and
Grigolo
,
B.
,
2019
, “
Patient-Specific Meniscus Prototype Based on 3D Bioprinting of Human Cell-Laden Scaffold
,”
Bone Joint Res.
,
8
(
2
), pp.
101
106
. 10.1302/2046-3758.82.BJR-2018-0134.R1
21.
Ahn
,
S.
,
Lee
,
H.
, and
Kim
,
G.
,
2013
, “
Functional Cell-Laden Alginate Scaffolds Consisting of Core/Shell Struts for Tissue Regeneration
,”
Carbohydr. Polym.
,
98
(
1
), pp.
936
942
. 10.1016/j.carbpol.2013.07.008
22.
Ahn
,
G.
,
Min
,
K.-H.
,
Kim
,
C.
,
Lee
,
J.-S.
,
Kang
,
D.
,
Won
,
J.-Y.
,
Cho
,
D.-W.
,
Kim
,
J.-Y.
,
Jin
,
S.
,
Yun
,
W.-S.
, and
Shim
, and
J.-H.
,
2017
, “
Precise Stacking of Decellularized Extracellular Matrix Based 3D Cell-Laden Constructs by a 3D Cell Printing System Equipped With Heating Modules
,”
Sci. Rep.
,
7
(
1
), p.
8624
. 10.1038/s41598-017-09201-5
23.
Kyle
,
S.
,
Jessop
,
Z. M.
,
Al-Sabah
,
A.
, and
Whitaker
,
I. S.
,
2017
, “
‘Printability of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art
,”
Adv. Healthcare Mater.
,
6
(
16
), p.
1700264
. 10.1002/adhm.201700264
24.
Bruneaux
,
J.
,
Therriault
,
D.
, and
Heuzey
,
M.-C.
,
2008
, “
Micro-extrusion of Organic Inks for Direct-Write Assembly
,”
J. Micromech. Microeng.
,
18
(
11
), p.
115020
. 10.1088/0960-1317/18/11/115020
25.
Zhao
,
Y.
,
Li
,
Y.
,
Mao
,
S.
,
Sun
,
W.
, and
Yao
,
R.
,
2015
, “
The Influence of Printing Parameters on Cell Survival Rate and Printability in Microextrusion-Based 3D Cell Printing Technology
,”
Biofabrication
,
7
(
4
), p.
045002
. 10.1088/1758-5090/7/4/045002
26.
He
,
Y.
,
Yang
,
F.
,
Zhao
,
H.
,
Gao
,
Q.
,
Xia
,
B.
, and
Fu
,
J.
,
2016
, “
Research on the Printability of Hydrogels in 3D Bioprinting
,”
Sci. Rep.
,
6
(
1
), p.
29977
. 10.1038/srep29977
27.
Smith
,
P. T.
,
Basu
,
A.
,
Saha
,
A.
, and
Nelson
,
A.
,
2018
, “
Chemical Modification and Printability of Shear-Thinning Hydrogel Inks for Direct-Write 3D Printing
,”
Polymer
,
152
(
1
), pp.
42
50
. 10.1016/j.polymer.2018.01.070
28.
Di Giuseppe
,
M.
,
Law
,
N.
,
Webb
,
B.
,
Macrae
,
R. A.
,
Liew
,
L. J.
,
Sercombe
,
T. B.
,
Dilley
,
R. J.
, and
Doyle
,
B. J.
,
2018
, “
Mechanical Behaviour of Alginate-Gelatin Hydrogels for 3D Bioprinting
,”
J. Mech. Behav. Biomed. Mater.
,
79
(
1
), pp.
150
157
. 10.1016/j.jmbbm.2017.12.018
29.
Schütz
,
K.
,
Placht
,
A. M.
,
Paul
,
B.
,
Brüggemeier
,
S.
,
Gelinsky
,
M.
, and
Lode
,
A.
,
2017
, “
Three-Dimensional Plotting of a Cell-Laden Alginate/Methylcellulose Blend: Towards Biofabrication of Tissue Engineering Constructs With Clinically Relevant Dimensions
,”
J. Tissue Eng. Regener. Med.
,
11
(
5
), pp.
1574
1587
. 10.1002/term.2058
30.
Markstedt
,
K.
,
Mantas
,
A.
,
Tournier
,
I.
,
Martínez Ávila
,
H. C.
,
Hägg
,
D.
, and
Gatenholm
,
P.
,
2015
, “
3D Bioprinting Human Chondrocytes with Nanocellulose–Alginate Bioink for Cartilage Tissue Engineering Applications
,”
Biomacromolecules
,
16
(
5
), pp.
1489
1496
. 10.1021/acs.biomac.5b00188
31.
Li
,
H.
,
Tan
,
Y. J.
,
Leong
,
K. F.
, and
Li
,
L.
,
2017
, “
3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel With Strong Interface Bonding
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
20086
20097
. 10.1021/acsami.7b04216
32.
Ahlfeld
,
T.
,
Cidonio
,
G.
,
Kilian
,
D.
,
Duin
,
S.
,
Akkineni
,
A.
,
Dawson
,
J.
,
Yang
,
S.
,
Lode
,
A.
,
Oreffo
,
R.
, and
Gelinsky
,
M.
,
2017
, “
Development of a Clay Based Bioink for 3D Cell Printing for Skeletal Application
,”
Biofabrication
,
9
(
3
), p.
034103
. 10.1088/1758-5090/aa7e96
33.
Mouser
,
V. H.
,
Melchels
,
F. P.
,
Visser
,
J.
,
Dhert
,
W. J.
,
Gawlitta
,
D.
, and
Malda
,
J.
,
2016
, “
Yield Stress Determines Bioprintability of Hydrogels Based on Gelatin-Methacryloyl and Gellan gum for Cartilage Bioprinting
,”
Biofabrication
,
8
(
3
), p.
035003
. 10.1088/1758-5090/8/3/035003
34.
Habib
,
A.
,
Sathish
,
V.
,
Mallik
,
S.
, and
Khoda
,
B.
,
2018
, “
3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel
,”
Materials
,
11
(
3
), p.
454
. 10.3390/ma11030454
35.
Piras
,
C. C.
,
Fernández-Prieto
,
S.
, and
De Borggraeve
,
W. M.
,
2017
, “
Nanocellulosic Materials as Bioinks for 3D Bioprinting
,”
Biomater. Sci.
,
5
(
10
), pp.
1988
1992
. 10.1039/C7BM00510E
36.
Li
,
V. C.
,
Mulyadi
,
A.
,
Dunn
,
C. K.
,
Deng
,
Y.
, and
Qi
,
H. J.
,
2018
, “
Direct Ink Write 3D Printed Cellulose Nanofiber Aerogel Structures With Highly Deformable, Shape Recoverable, and Functionalizable Properties
,”
ACS Sustainable Chem. Eng.
,
6
(
2
), pp.
2011
2022
. 10.1021/acssuschemeng.7b03439
37.
Agarwal
,
T.
,
Narayana
,
S. G. H.
,
Pal
,
K.
,
Pramanik
,
K.
,
Giri
,
S.
, and
Banerjee
,
I.
,
2015
, “
Calcium Alginate-Carboxymethyl Cellulose Beads for Colon-Targeted Drug Delivery
,”
Int. J. Biol. Macromol.
,
75
(
1
), pp.
409
417
. 10.1016/j.ijbiomac.2014.12.052
38.
Garrett
,
Q.
,
Simmons
,
P. A.
,
Xu
,
S.
,
Vehige
,
J.
,
Zhao
,
Z.
,
Ehrmann
,
K.
, and
Willcox
,
M.
,
2007
, “
Carboxymethylcellulose Binds to Human Corneal Epithelial Cells and is a Modulator of Corneal Epithelial Wound Healing
,”
Invest. Ophthalmol. Visual Sci.
,
48
(
4
), pp.
1559
1567
. 10.1167/iovs.06-0848
39.
Narayanan
,
L. K.
,
Huebner
,
P.
,
Fisher
,
M. B.
,
Spang
,
J. T.
,
Starly
,
B.
, and
Shirwaiker
,
R. A.
,
2016
, “
3D-bioprinting of Polylactic Acid (PLA) Nanofiber–Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1732
1742
. 10.1021/acsbiomaterials.6b00196
40.
Nguyen
,
D.
,
Hägg
,
D. A.
,
Forsman
,
A.
,
Ekholm
,
J.
,
Nimkingratana
,
P.
,
Brantsing
,
C.
,
Kalogeropoulos
,
T.
,
Zaunz
,
S.
,
Concaro
,
S.
,
Brittberg
,
M.
,
Lindahl
,
A.
,
Gatenholm
,
P.
,
Enejder
,
A.
, and
Simonsson
,
S.
,
2017
, “
Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink
,”
Sci. Rep.
,
7
(
1
), p.
658
. 10.1038/s41598-017-00690-y
41.
Laurén
,
P.
,
Somersalo
,
P.
,
Pitkänen
,
I.
,
Lou
,
Y.-R.
,
Urtti
,
A.
,
Partanen
,
J.
,
Seppälä
,
J.
,
Madetoja
,
M.
,
Laaksonen
,
T.
, and
Mäkitie
,
A.
,
2017
, “
Nanofibrillar Cellulose-Alginate Hydrogel Coated Surgical Sutures as Cell-Carrier Systems
,”
PLoS One
,
12
(
8
), p.
e0183487
. 10.1371/journal.pone.0183487
42.
Singh
,
T.
,
Kothapalli
,
C.
,
Varma
,
D.
,
Nicoll
,
S. B.
, and
Vazquez
,
M.
,
2014
, “
Carboxymethylcellulose Hydrogels Support Central Nervous System-Derived Tumor-Cell Chemotactic Migration: Comparison With Conventional Extracellular Matrix Macromolecules
,”
J. Biomater. Appl.
,
29
(
3
), pp.
433
441
. 10.1177/0885328214532969
43.
Torres-Rendon
,
J. G.
,
Köpf
,
M.
,
Gehlen
,
D.
,
Blaeser
,
A.
,
Fischer
,
H.
,
Laporte
,
L. D.
, and
Walther
,
A.
,
2016
, “
Cellulose Nanofibril Hydrogel Tubes as Sacrificial Templates for Freestanding Tubular Cell Constructs
,”
Biomacromolecules
,
17
(
3
), pp.
905
913
. 10.1021/acs.biomac.5b01593
44.
Lin
,
N.
, and
Dufresne
,
A.
,
2014
, “
Nanocellulose in Biomedicine: Current Status and Future Prospect
,”
Eur. Polym. J.
,
59
(
1
), pp.
302
325
. 10.1016/j.eurpolymj.2014.07.025
45.
Mohammadi
,
P.
,
Toivonen
,
M. S.
,
Ikkala
,
O.
,
Wagermaier
,
W.
, and
Linder
,
M. B.
,
2017
, “
Aligning Cellulose Nanofibril Dispersions for Tougher Fibers
,”
Sci. Rep.
,
7
(
1
), pp.
1
10
. 10.1038/s41598-017-12107-x
46.
Ding
,
H.
, and
Chang
,
R.
,
2018
, “
Printability Study of Bioprinted Tubular Structures Using Liquid Hydrogel Precursors in a Support Bath
,”
Appl. Sci.
,
8
(
3
), p.
403
. 10.3390/app8030403
47.
Šebenik
,
U.
,
Krajnc
,
M.
,
Alič
,
B.
, and
Lapasin
,
R.
,
2019
, “
Ageing of Aqueous TEMPO-Oxidized Nanofibrillated Cellulose Dispersions: A Rheological Study
,”
Cellulose
,
26
(
2
), pp.
917
931
. 10.1007/s10570-018-2128-1
48.
Ouyang
,
L.
,
Yao
,
R.
,
Zhao
,
Y.
, and
Sun
,
W.
,
2016
, “
Effect of Bioink Properties on Printability and Cell Viability for 3D Bioplotting of Embryonic Stem Cells
,”
Biofabrication
,
8
(
3
), p.
035020
. 10.1088/1758-5090/8/3/035020
49.
Therriault
,
D.
,
White
,
S. R.
, and
Lewis
,
J. A.
,
2007
, “
Rheological Behavior of Fugitive Organic Inks for Direct-Write Assembly
,”
Appl. Rheol.
,
17
(
1
), pp.
10112-1
10112-8
. 10.1515/arh-2007-0001
50.
Hanson Shepherd
,
J. N.
,
Parker
,
S. T.
,
Shepherd
,
R. F.
,
Gillette
,
M. U.
,
Lewis
,
J. A.
, and
Nuzzo
,
R. G.
,
2011
, “
3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures
,”
Adv. Funct. Mater.
,
21
(
1
), pp.
47
54
. 10.1002/adfm.201001746
51.
Billiet
,
T.
,
Gevaert
,
E.
,
De Schryver
,
T.
,
Cornelissen
,
M.
, and
Dubruel
,
P.
,
2014
, “
The 3D Printing of Gelatin Methacrylamide Cell-Laden Tissue-Engineered Constructs With High Cell Viability
,”
Biomaterials
,
35
(
1
), pp.
49
62
. 10.1016/j.biomaterials.2013.09.078
52.
Bertola
,
V.
,
Bertrand
,
F.
,
Tabuteau
,
H.
,
Bonn
,
D.
, and
Coussot
,
P.
,
2003
, “
Wall Slip and Yielding in Pasty Materials
,”
J. Rheol.
,
47
(
5
), pp.
1211
1226
. 10.1122/1.1595098
53.
Barnes
,
H. A.
,
1995
, “
A Review of the Slip (Wall Depletion) of Polymer Solutions, Emulsions and Particle Suspensions in Viscometers: Its Cause, Character, and Cure
,”
J. Non-Newtonian Fluid Mech.
,
56
(
3
), pp.
221
251
. 10.1016/0377-0257(94)01282-M
54.
Toker
,
O. S.
,
Karasu
,
S.
,
Yilmaz
,
M. T.
, and
Karaman
,
S.
,
2015
, “
Three Interval Thixotropy Test (3ITT) in Food Applications: A Novel Technique to Determine Structural Regeneration of Mayonnaise Under Different Shear Conditions
,”
Food Res. Int.
,
70
(
1
), pp.
125
133
. 10.1016/j.foodres.2015.02.002
55.
Li
,
H.
,
Liu
,
S.
, and
Lin
,
L.
,
2016
, “
Rheological Study on 3D Printability of Alginate Hydrogel and Effect of Graphene Oxide
,”
Int. J. Bioprint.
,
2
(
2
), pp.
163
175
. 10.18063/ijb.2016.02.007
56.
You
,
F.
,
Wu
,
X.
,
Zhu
,
N.
,
Lei
,
M.
,
Eames
,
B. F.
, and
Chen
,
X.
,
2016
, “
3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering
,”
ACS Biomater. Sci. Eng.
,
2
(
7
), pp.
1200
1210
. 10.1021/acsbiomaterials.6b00258
57.
Liu
,
Z.
,
Zhang
,
M.
,
Bhandari
,
B.
, and
Yang
,
C.
,
2018
, “
Impact of Rheological Properties of Mashed Potatoes on 3D Printing
,”
J. Food Eng.
,
220
(
1
), pp.
76
82
. 10.1016/j.jfoodeng.2017.04.017
58.
Costakis
,
W. J.
, Jr.
,
Rueschhoff
,
L. M.
,
Diaz-Cano
,
A. I.
,
Youngblood
,
J. P.
, and
Trice
,
R. W.
,
2016
, “
Additive Manufacturing of Boron Carbide via Continuous Filament Direct Ink Writing of Aqueous Ceramic Suspensions
,”
J. Eur. Ceram. Soc.
,
36
(
14
), pp.
3249
3256
. 10.1016/j.jeurceramsoc.2016.06.002
59.
Zhang
,
M.
,
Vora
,
A.
,
Han
,
W.
,
Wojtecki
,
R. J.
,
Maune
,
H.
,
Le
,
A. B.
,
Thompson
,
L. E.
,
McClelland
,
G. M.
,
Ribet
,
F.
,
Engler
,
A. C.
, and
Nelson
,
A.
,
2015
, “
Dual-Responsive Hydrogels for Direct-Write 3D Printing
,”
Macromolecules
,
48
(
18
), pp.
6482
6488
. 10.1021/acs.macromol.5b01550
60.
Ribeiro
,
A.
,
Blokzijl
,
M. M.
,
Levato
,
R.
,
Visser
,
C. W.
,
Castilho
,
M.
,
Hennink
,
W. E.
,
Vermonden
,
T.
, and
Malda
,
J.
,
2017
, “
Assessing Bioink Shape Fidelity to Aid Material Development in 3D Bioprinting
,”
Biofabrication
,
10
(
1
), p.
014102
. 10.1088/1758-5090/aa90e2
61.
Schuurman
,
W.
,
Levett
,
P. A.
,
Pot
,
M. W.
,
van Weeren
,
P. R.
,
Dhert
,
W. J.
,
Hutmacher
,
D. W.
,
Melchels
,
F. P.
,
Klein
,
T. J.
, and
Malda
,
J.
,
2013
, “
Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs
,”
Macromol. Biosci.
,
13
(
5
), pp.
551
561
. 10.1002/mabi.201200471
62.
Ahlfeld
,
T.
,
Köhler
,
T.
,
Czichy
,
C.
,
Lode
,
A.
, and
Gelinsky
,
M.
,
2018
, “
A Methylcellulose Hydrogel as Support for 3D Plotting of Complex Shaped Calcium Phosphate Scaffolds
,”
Gels
,
4
(
3
), p.
68
. 10.3390/gels4030068
63.
Seidel
,
J.
,
Ahlfeld
,
T.
,
Adolph
,
M.
,
Kümmritz
,
S.
,
Steingroewer
,
J.
,
Krujatz
,
F.
,
Bley
,
T.
,
Gelinsky
,
M.
, and
Lode
,
A.
,
2017
, “
Green Bioprinting: Extrusion-Based Fabrication of Plant Cell-Laden Biopolymer Hydrogel Scaffolds
,”
Biofabrication
,
9
(
4
), p.
045011
. 10.1088/1758-5090/aa8854
64.
Jang
,
J.
,
Kim
,
T. G.
,
Kim
,
B. S.
,
Kim
,
S.-W.
,
Kwon
,
S.-M.
, and
Cho
,
D.-W.
,
2016
, “
Tailoring Mechanical Properties of Decellularized Extracellular Matrix Bioink by Vitamin B2-Induced Photo-Crosslinking
,”
Acta Biomater.
,
33
(
1
), pp.
88
95
. 10.1016/j.actbio.2016.01.013
65.
Paxton
,
N. C.
,
Smolan
,
W.
,
Böck
,
T.
,
Melchels
,
F. P.
,
Groll
,
J.
, and
Juengst
,
T.
,
2017
, “
Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability
,”
Biofabrication
,
9
(
4
), p.
044107
. 10.1088/1758-5090/aa8dd8
66.
Habib
,
A.
, and
Khoda
,
B.
,
2019
, “
Development of Clay Based Novel Hybrid bio-Ink for 3D Bio-printing Process
,”
J. Manuf. Processes
,
38
(
1
), pp.
76
87
. 10.1016/j.jmapro.2018.12.034
67.
Guo
,
Z.
,
Ma
,
M.
,
Huang
,
X.
,
Li
,
H.
, and
Zhou
,
C.
,
2017
, “
Effect of Fiber Diameter on Proliferation and Differentiation of MC3T3-E1 Pre-osteoblasts
,”
J. Biomater. Tissue Eng.
,
7
(
2
), pp.
162
169
. 10.1166/jbt.2017.1548
68.
Skardal
,
A.
,
Mack
,
D.
,
Atala
,
A.
, and
Soker
,
S.
,
2013
, “
Substrate Elasticity Controls Cell Proliferation, Surface Marker Expression and Motile Phenotype in Amniotic Fluid-Derived Stem Cells
,”
J. Mech. Behav. Biomed. Mater.
,
17
(
1
), pp.
307
316
. 10.1016/j.jmbbm.2012.10.001
69.
Hua
,
K.
,
Ålander
,
E.
,
Lindström
,
T.
,
Mihranyan
,
A.
,
Strømme
,
M.
, and
Ferraz
,
N.
,
2015
, “
Surface Chemistry of Nanocellulose Fibers Directs Monocyte/Macrophage Response
,”
Biomacromolecules
,
16
(
9
), pp.
2787
2795
. 10.1021/acs.biomac.5b00727
70.
Xu
,
X.
,
Jagota
,
A.
,
Peng
,
S.
,
Luo
,
D.
,
Wu
,
M.
, and
Hui
,
C.-Y.
,
2013
, “
Gravity and Surface Tension Effects on the Shape Change of Soft Materials
,”
Langmuir
,
29
(
27
), pp.
8665
8674
. 10.1021/la400921h
You do not currently have access to this content.