Abstract

It is challenging for the existing fabrication strategies to generate microscale wavy and coiling structures with low cost and high efficiency. In this work, we develop a novel and simple method that allows the fabrication of microscale wavy and coiling fiber arrays via near-field electrospinning (NFES). In addition to the main vertical electric potential for polymer jet generation, additional electrostatic signals are applied to the side-auxiliary electrodes to dynamically control the fiber deposition. Compared with traditional electrospinning based on the buckling instability or mechanical collector movement, the proposed method shows advantages in terms of the controllability, stability, accuracy, and minimal feature size. A theoretical model to describe the polymer jet behaviors has been proposed to simulate the fabrication process by considering the momentum balance of viscoelastic, charge repulsive, and electric forces. The model has been directly verified through the comparison with experimental results. The effects of different process parameters on the fiber deposition patterns are analyzed and discussed. The processing capability has been further demonstrated by fabricating two-dimensional wavy and coiling patterns as well as three-dimensional wavy structures with the radius of curvature less than 100 µm.

References

1.
Ago
,
H.
,
Petritsch
,
K.
,
Shaffer
,
M. S.
,
Windle
,
A. H.
, and
Friend
,
R. H.
,
1999
, “
Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices
,”
Adv. Mater.
,
11
(
15
), pp.
1281
1285
.10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6
2.
Kong
,
X. Y.
, and
Wang
,
Z. L.
,
2003
, “
Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts
,”
Nano Lett.
,
3
(
12
), pp.
1625
1631
. 10.1021/nl034463p
3.
Zhang
,
H.-F.
,
Wang
,
C.-M.
,
Buck
,
E. C.
, and
Wang
,
L.-S.
,
2003
, “
Synthesis, Characterization, and Manipulation of Helical SiO2 Nanosprings
,”
Nano Lett.
,
3
(
5
), pp.
577
580
.10.1021/nl0341180
4.
Huang
,
Y.
,
Bu
,
N.
,
Duan
,
Y.
,
Pan
,
Y.
,
Liu
,
H.
,
Yin
,
Z.
, and
Xiong
,
Y.
,
2013
, “
Electrohydrodynamic Direct-Writing
,”
Nanoscale
,
5
(
24
), pp.
12007
12017
. 10.1039/c3nr04329k
5.
Choi
,
S. W.
,
Jo
,
S. M.
,
Lee
,
W. S.
, and
Kim
,
Y. R.
,
2003
, “
An Electrospun Poly (Vinylidene Fluoride) Nanofibrous Membrane and Its Battery Applications
,”
Adv. Mater.
,
15
(
23
), pp.
2027
2032
. 10.1002/adma.200304617
6.
Beeby
,
S. P.
,
Torah
,
R.
,
Tudor
,
M.
,
Glynne-Jones
,
P.
,
O'donnell
,
T.
,
Saha
,
C.
, and
Roy
,
S.
,
2007
, “
A Micro Electromagnetic Generator for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
,
17
(
7
), pp.
1257
1265
. 10.1088/0960-1317/17/7/007
7.
Wang
,
Z. L.
, and
Wu
,
W.
,
2012
, “
Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems
,”
Angew. Chem., Int. Ed.
,
51
(
47
), pp.
11700
11721
. 10.1002/anie.201201656
8.
Fang
,
H.-B.
,
Liu
,
J.-Q.
,
Xu
,
Z.-Y.
,
Dong
,
L.
,
Wang
,
L.
,
Chen
,
D.
,
Cai
,
B.-C.
, and
Liu
,
Y.
,
2006
, “
Fabrication and Performance of MEMS-Based Piezoelectric Power Generator for Vibration Energy Harvesting
,”
Microelectron. J.
,
37
(
11
), pp.
1280
1284
. 10.1016/j.mejo.2006.07.023
9.
Esposito
,
M.
,
Tasco
,
V.
,
Todisco
,
F.
,
Benedetti
,
A.
,
Sanvitto
,
D.
, and
Passaseo
,
A.
,
2014
, “
Three Dimensional Chiral Metamaterial Nanospirals in the Visible Range by Vertically Compensated Focused Ion Beam Induced-Deposition
,”
Adv. Opt. Mater.
,
2
(
2
), pp.
154
161
. 10.1002/adom.201300323
10.
Boman
,
M.
,
Westberg
,
H.
,
Johansson
,
S.
, and
Schweitz
,
J.-A.
,
1992
, “
Helical Microstructures Grown by Laser Assisted Chemical Vapor Deposition
,”
Proceedings IEEE Micro Electro Mechanical Systems
,
Travemunde, Germany
,
Feb. 4–7
, pp.
162
167
.
11.
Provin
,
C.
,
Monneret
,
S.
,
Le Gall
,
H.
, and
Corbel
,
S.
,
2003
, “
Three-Dimensional Ceramic Microcomponents Made Using Microstereolithography
,”
Adv. Mater.
,
15
(
12
), pp.
994
997
.10.1002/adma.200304916
12.
Pham
,
T. A.
,
Kim
,
D. P.
,
Lim
,
T. W.
,
Park
,
S. H.
,
Yang
,
D. Y.
, and
Lee
,
K. S.
,
2006
, “
Three-Dimensional SiCN Ceramic Microstructures via Nano-Stereolithography of Inorganic Polymer Photoresists
,”
Adv. Funct. Mater.
,
16
(
9
), pp.
1235
1241
.10.1002/adfm.200600009
13.
Li
,
D.
, and
Xia
,
Y.
,
2004
, “
Electrospinning of Nanofibers: Reinventing the Wheel?
,”
Adv. Mater.
,
16
(
14
), pp.
1151
1170
. 10.1002/adma.200400719
14.
Dzenis
,
Y.
,
2004
, “
Spinning Continuous Fibers for Nanotechnology
,”
Science
,
304
(
5679
), pp.
1917
1919
.10.1126/science.1099074
15.
Hellmann
,
C.
,
Belardi
,
J.
,
Dersch
,
R.
,
Greiner
,
A.
,
Wendorff
,
J. H.
, and
Bahnmüller
,
S.
,
2009
, “
High Precision Deposition Electrospinning of Nanofibers and Nanofiber Nonwovens
,”
Polymer
,
50
(
5
), pp.
1197
1205
.10.1016/j.polymer.2009.01.029
16.
Wu
,
Y.
,
Wu
,
B.
,
Vijayavenkataraman
,
S.
,
San Wong
,
Y.
, and
Fuh
,
J. Y. H.
,
2017
, “
Crimped Fiber With Controllable Patterns Fabricated via Electrohydrodynamic Jet Printing
,”
Mater. Des.
,
131
, pp.
384
393
. 10.1016/j.matdes.2017.06.027
17.
Li
,
D.
,
Wang
,
Y.
, and
Xia
,
Y.
,
2003
, “
Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays
,”
Nano Lett.
,
3
(
8
), pp.
1167
1171
. 10.1021/nl0344256
18.
Buttafoco
,
L.
,
Kolkman
,
N.
,
Engbers-Buijtenhuijs
,
P.
,
Poot
,
A. A.
,
Dijkstra
,
P. J.
,
Vermes
,
I.
, and
Feijen
,
J.
,
2006
, “
Electrospinning of Collagen and Elastin for Tissue Engineering Applications
,”
Biomaterials
,
27
(
5
), pp.
724
734
.10.1016/j.biomaterials.2005.06.024
19.
Stankus
,
J. J.
,
Guan
,
J.
, and
Wagner
,
W. R.
,
2004
, “
Fabrication of Biodegradable Elastomeric Scaffolds With Sub-Micron Morphologies
,”
J. Biomed. Mater. Res., Part A
,
70
(
4
), pp.
603
614
. 10.1002/jbm.a.30122
20.
Kim
,
G. H.
,
2006
, “
Electrospinning Process Using Field-Controllable Electrodes
,”
J. Polym. Sci., Part B: Polym. Phys.
,
44
(
10
), pp.
1426
1433
.10.1002/polb.20814
21.
Qin
,
H.
,
Wei
,
C.
,
Dong
,
J.
, and
Lee
,
Y. S.
,
2017
, “
Direct Printing and Electrical Characterization of Conductive Micro-Silver Tracks by Alternating Current-Pulse Modulated Electrohydrodynamic Jet Printing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021008
. 10.1115/1.4033903
22.
Deitzel
,
J. M.
,
Kleinmeyer
,
J.
,
Hirvonen
,
J.
, and
Tan
,
N. B.
,
2001
, “
Controlled Deposition of Electrospun Poly (Ethylene Oxide) Fibers
,”
Polymer
,
42
(
19
), pp.
8163
8170
.10.1016/S0032-3861(01)00336-6
23.
Reneker
,
D. H.
, and
Yarin
,
A. L.
,
2008
, “
Electrospinning Jets and Polymer Nanofibers
,”
Polymer
,
49
(
10
), pp.
2387
2425
. 10.1016/j.polymer.2008.02.002
24.
Taylor
,
G. I.
,
1964
, “
Disintegration of Water Drops in an Electric Field
,”
Proc. R. Soc. London, A
,
280
(
1382
), pp.
383
397
.10.1098/rspa.1964.0151
25.
Pannier
,
C. P.
,
Diagne
,
M.
,
Spiegel
,
I. A.
,
Hoelzle
,
D. J.
, and
Barton
,
K.
,
2017
, “
A Dynamical Model of Drop Spreading in Electrohydrodynamic Jet Printing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111008
. 10.1115/1.4037436
26.
Tourlomousis
,
F.
,
Ding
,
H.
,
Kalyon
,
D. M.
, and
Chang
,
R. C.
,
2017
, “
Melt Electrospinning Writing Process Guided by a “Printability Number”
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081004
. 10.1115/1.4036348
27.
Yarin
,
A. L.
,
Koombhongse
,
S.
, and
Reneker
,
D. H.
,
2001
, “
Taylor Cone and Jetting From Liquid Droplets in Electrospinning of Nanofibers
,”
J. Appl. Phys.
,
90
(
9
), pp.
4836
4846
. 10.1063/1.1408260
28.
Reneker
,
D. H.
,
Yarin
,
A. L.
,
Fong
,
H.
, and
Koombhongse
,
S.
,
2000
, “
Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning
,”
J. Appl. Phys.
,
87
(
9
), pp.
4531
4547
. 10.1063/1.373532
29.
Huang
,
Y.
,
Ding
,
Y.
,
Bian
,
J.
,
Su
,
Y.
,
Zhou
,
J.
,
Duan
,
Y.
, and
Yin
,
Z.
,
2017
, “
Hyper-stretchable Self-Powered Sensors Based on Electrohydrodynamically Printed, Self-Similar Piezoelectric Nano/Microfibers
,”
Nano Energy
,
40
, pp.
432
439
. 10.1016/j.nanoen.2017.07.048
30.
Fuh
,
Y. K.
,
Wang
,
B. S.
, and
Tsai
,
C. Y.
,
2017
, “
Self-Powered Pressure Sensor With Fully Encapsulated 3D Printed Wavy Substrate and Highly-Aligned Piezoelectric Fibers Array
,”
Sci. Rep.
,
7
(
1
), pp.
1
7
. 10.1038/s41598-017-07360-z
You do not currently have access to this content.