Abstract

Micro/meso-scale mechanical machining (M4) processes are miniaturized versions of conventional machining processes such as milling, drilling, and turning, where material removal is accomplished by physical contact between the micro/meso-scale cutting tool and the workpiece. The objective of this review paper is to provide an assessment of the state-of-the-field related to M4 processes during the last two decades. Key systems-level issues related to the deployment of M4 processes including micro/meso-scale machine tool (mMT) design, sensing/calibration, cutting tools, and lubrication strategies are discussed. Emerging material systems are identified along with the specific challenges posed for the development of microstructure-based process models. The topic of micro/meso-scale machining dynamics is reviewed both in terms of recent research findings as well as unresolved challenges posed by the complexity of experimental characterization and modeling. Finally, key industry trends are discussed along with promising interdisciplinary drivers that are expected to influence this field in the upcoming decade.

References

1.
Masuzawa
,
T.
,
2000
, “
State of the Art of Micromachining
,”
CIRP Ann.
,
49
(
2
), pp.
473
488
. 10.1016/S0007-8506(07)63451-9
2.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.
3.
Ehmann
,
K. F.
,
Bourell
,
D.
,
Culpepper
,
M.L.
,
Hodgson
,
T.J.
,
Kurfess
,
Th.R.
,
Madou
,
M.
,
Rajurkar
,
K.
, and
DeVor
,
R.
,
2007
,
Micromanufacturing—International Assessment of Research and Development
,
WTEC (World Technology Evaluation Center), Springer
,
Dordrecht, The Netherlands
, pp.
1
362
.
4.
Weinert
,
K.
,
Inasaki
,
I.
,
Sutherland
,
J. W.
, and
Wakabayashi
,
T.
,
2004
, “
Dry Machining and Minimum Quantity Lubrication
,”
CIRP Ann.—Manuf. Technol.
,
53
(
2
), pp.
511
537
. 10.1016/S0007-8506(07)60027-4
5.
Robinson
,
G. M.
, and
Jackson
,
M. J.
,
2005
, “
A Review of Micro and Nanomachining From a Materials Perspective
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
316
337
.
6.
Luo
,
X.
,
Cheng
,
K.
,
Webb
,
D.
, and
Wardle
,
F.
,
2005
, “
Design of Ultraprecision Machine Tools With Applications to Manufacture of Miniature and Micro Components
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
515
528
. 10.1016/j.jmatprotec.2005.05.050
7.
Chae
,
J.
,
Park
,
S. S.
, and
Freiheit
,
T.
,
2006
, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
313
332
. 10.1016/j.ijmachtools.2005.05.015
8.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.—Manuf. Technol.
,
55
(
2
), pp.
745
768
. 10.1016/j.cirp.2006.10.006
9.
Gentili
,
F.
,
Tabaglio
,
E.
, and
Aggogeri
,
L.
,
2006
,
Review on Micromachining Techniques
,
Springer US
,
New York, NY
.
10.
Robinson
,
G. M.
,
Jackson
,
M. J.
, and
Whitfield
,
M. D.
,
2007
, “
A Review of Machining Theory and Tool Wear With a View to Developing Micro and Nano Machining Processes
,”
J. Mater. Sci.
,
42
, pp.
2002
2015
. 10.1007/s10853-006-0171-z
11.
Wang
,
Q. Y.
,
Fang
,
F. Z.
, and
Hu
,
X. T.
,
2007
, “
Comprehensive Review of Micro/Meso-Scale Machine Tools
,”
Proc. SPIE—Int. Soc. Opt. Eng.
,
6724
(
2007
), p.
67241K
(6p.).
12.
Soo
,
S. L.
, and
Aspinwall
,
D. K.
,
2007
, “
Developments in Modelling of Metal Cutting Processes
,”
Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl.
,
221
(
4
), pp.
197
211
.
13.
Brinksmeier
,
E.
,
Gläbe
,
R.
,
Riemer
,
O.
, and
Twardy
,
S.
,
2008
, “
Potentials of Precision Machining Processes for the Manufacture of Micro Forming Molds
,”
Microsyst. Technol.
,
14
(
12
), pp.
1983
1987
. 10.1007/s00542-008-0656-6
14.
Ehmann
,
K. F.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Cao
,
J.
,
2008
, “Design and Analysis of Micro/Meso-scale Machine Tools,”
Smart Devices and Machines for Advanced Manufacturing
,
L.
Wang
, and
J.
Xi
, eds.,
Springer
,
London
, pp.
283
318
.
15.
Ducobu
,
F.
,
Filippi
,
E.
, and
Rivière-Lorphèvre
,
E.
,
2009
, “
Chip Formation and Minimum Chip Thickness in Micro-Milling
,”
Proceedings of the 12th CIRP Conference on Modeling of Machining Operations
,
Donostia-San Sebastián, Spain
,
May 7–8
, Vol.
1
, pp.
339
346
.
16.
Liow
,
J. L.
,
2009
, “
Mechanical Micromachining: a Sustainable Micro-Device Manufacturing Approach?
,”
J. Clean. Prod.
,
17
(
7
), pp.
662
667
. 10.1016/j.jclepro.2008.11.012
17.
Qin
,
Y.
,
Brockett
,
A.
,
Ma
,
Y.
,
Razali
,
A.
,
Zhao
,
J.
,
Harrison
,
C.
,
Pan
,
W.
,
Dai
,
X.
, and
Loziak
,
D.
,
2010
, “
Micro-manufacturing: Research, Technology Outcomes and Development Issues
,”
Int. J. Adv. Manuf. Technol.
,
47
(
9–12
), pp.
821
837
. 10.1007/s00170-009-2411-2
18.
Wulfsberg
,
J. P.
,
Redlich
,
T.
, and
Kohrs
,
P.
,
2010
, “
Square Foot Manufacturing: A New Production Concept for Micro Manufacturing
,”
Prod. Eng.
,
4
(
1
), pp.
75
83
. 10.1007/s11740-009-0193-x
19.
Camara
,
M. A.
,
Campos Rubia
,
J. C.
,
Abrao
,
A. M.
, and
Davim
,
J. P.
,
2012
, “
State of the Art on Micromilling of Materials: A Review
,”
J. Mater. Sci. Technol.
,
28
(
8
), pp.
673
685
. 10.1016/S1005-0302(12)60115-7
20.
Jain
,
V. K.
, ed.,
2012
,
Micromanufacturing Processes
, 1st ed.,
CRC Press
,
New York, NY
.
21.
Cheng
,
K.
, and
Huo
,
D.
, eds.,
2013
,
Micro-Cutting: Fundamentals and Applications
,
John Wiley and Sons, Ltd.
,
Oxford, UK
.
22.
Germain
,
D.
,
Fromentin
,
G.
,
Poulachon
,
G.
, and
Bissey-Breton
,
S.
,
2013
, “
From Large-Scale to Micromachining: A Review of Force Prediction Models
,”
J. Manuf. Process.
,
15
(
3
), pp.
389
401
. 10.1016/j.jmapro.2013.02.006
23.
Liu
,
Z.
,
Shi
,
Z.
, and
Wan
,
Y.
,
2013
, “
Definition and Determination of the Minimum Uncut Chip Thickness of Microcutting
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1219
1232
.
24.
Anand
,
R. S.
, and
Patra
,
K.
,
2014
, “
Modeling and Simulation of Mechanical Micro-Machining—A Review
,”
Mach. Sci. Technol.
,
18
(
3
), pp.
323
347
. 10.1080/10910344.2014.925377
25.
Leo Kumar
,
S. P.
,
Jerald
,
J.
,
Kumanan
,
S.
, and
Prabakaran
,
R.
, “
A Review on Current Research Aspects in Tool-Based Micromachining Processes
,”
Mater. Manuf. Process.
,
29
(
11–12
), pp.
1291
1337
.
26.
Piljek
,
P.
,
Keran
,
Z.
, and
Math
,
M.
,
2014
, “
Micromachining-Review of Literature From 1980 to 2010
,”
Interdiscip. Descr. Complex Syst.
,
12
(
1
), pp.
1
27
. 10.7906/indecs.12.1.1
27.
Goel
,
S.
,
Luo
,
X.
,
Agrawal
,
A.
, and
Reuben
,
R. L.
,
2015
, “
Diamond Machining of Silicon: A Review of Advances in Molecular Dynamics Simulation
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
131
164
. 10.1016/j.ijmachtools.2014.09.013
28.
Chavoshi
,
S. Z.
, and
Luo
,
X.
,
2015
, “
Hybrid Micro-Machining Processes: A Review
,”
Precis. Eng.
,
41
, pp.
1
23
. 10.1016/j.precisioneng.2015.03.001
29.
Sharma
,
A. K.
,
Tiwari
,
A. K.
, and
Dixit
,
A. R.
,
2016
, “
Effects of Minimum Quantity Lubrication (MQL) in Machining Processes Using Conventional and Nanofluid Based Cutting Fluids: A Comprehensive Review
,”
J. Cleaner Prod.
,
127
, pp.
1
18
. 10.1016/j.jclepro.2016.03.146
30.
Thalmann
,
R.
,
Meli
,
F.
, and
Küng
,
A.
,
2016
, “
State of the Art of Tactile Micro Coordinate Metrology
,”
Appl. Sci.
,
6
(
5
), p.
150
. 10.3390/app6050150
31.
Venkatesh
,
V.
,
Swain
,
N.
,
Srinivas
,
G.
,
Kumar
,
P.
, and
Barshilia
,
H. C.
,
2017
, “
Review on the Machining Characteristics and Research Prospects of Conventional Microscale Machining Operations
,”
Mater. Manuf. Process.
,
32
(
3
), pp.
235
262
. 10.1080/10426914.2016.1151045
32.
Gao
,
S.
, and
Huang
,
H.
,
2017
, “
Recent Advances in Micro- and Nano-Machining Technologies
,”
Front. Mech. Eng.
,
12
(
1
), pp.
18
32
. 10.1007/s11465-017-0410-9
33.
Pawar
,
P.
,
Ballav
,
R.
, and
Kumar
,
A.
,
2017
, “
Micromachining of Borosilicate Glass: A State of Art Review
,”
Mater. Today Proc.
,
4
(
2
), pp.
2813
2821
. 10.1016/j.matpr.2017.02.161
34.
Carou
,
D.
,
Rubio
,
E. M.
,
Herrera
,
J.
,
Lauro
,
C. H.
, and
Davim
,
J. P.
,
2017
, “
Latest Advances in the Micro-Milling of Titanium Alloys: A Review
,”
Proc. Manuf.
,
13
, pp.
275
282
. 10.1016/j.promfg.2017.09.071
35.
Chavoshi
,
S. Z.
,
Goel
,
S.
, and
Morantz
,
P.
,
2017
, “
Current Trends and Future of Sequential Micro-Machining Processes on a Single Machine Tool
,”
Mater. Des.
,
127
, pp.
37
53
. 10.1016/j.matdes.2017.04.057
36.
Boswell
,
B.
,
Islam
,
M. N.
, and
Davies
,
I. J.
,
2018
, “
A Review of Micro-Mechanical Cutting
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
789
806
. 10.1007/s00170-017-0912-y
37.
Oliaei
,
S. N. B.
,
Karpat
,
Y.
,
Davim
,
J. P.
, and
Perveen
,
A.
,
2018
, “
Micro Tool Design and Fabrication: A Review
,”
J. Manuf. Process.
,
36
, pp.
496
519
. 10.1016/j.jmapro.2018.10.038
38.
Pratap
,
T.
, and
Patra
,
K.
,
2018
, “
Micro Ball-end Milling—An Emerging Manufacturing Technology for Micro-Feature Patterns
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
2821
2845
. 10.1007/s00170-017-1064-9
39.
Schneider
,
F.
,
Das
,
J.
,
Kirsch
,
B.
,
Linke
,
B.
, and
Aurich
,
J. C.
,
2019
, “
Sustainability in Ultra Precision and Micro Machining: A Review
,”
Int. J. Precis. Eng. Manuf. Technol.
,
6
(
3
), pp.
601
610
. 10.1007/s40684-019-00035-2
40.
Kumar
,
K.
,
Zindani
,
D.
,
Kumari
,
N.
, and
Davim
,
J. P.
,
2019
,
Micro and Nano Machining of Engineering Materials: Recent Developments
,
Springer Switzerland
,
Cham, Switzerland
, p.
150
.
41.
Vogler
,
M. P.
,
Liu
,
X.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
,
2002
, “
Development of Meso-Scale Machine Tool (mMT) Systems
,”
SME North American Manufacturing Research Conference (NAMRC)-XXX
,
West Lafayette, IN
,
May 21–24
.
42.
Honegger
,
A. E.
,
Langstaff
,
G. Q.
,
Phillip
,
A. G.
,
Vanravenswaay
,
T. D.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
,
2006
, “
Development of an Automated Microfactory: Part 1—Microfactory Architecture and Sub-Systems Development
,”
SME North American Manufacturing Research Conference (NAMRC) 34
,
Milwaukee, WI
,
May 24–27
, pp.
333
340
.
43.
Devor
,
R. E.
,
Kapoor
,
S. G.
,
Cao
,
J.
, and
Ehmann
,
K. F.
,
2012
, “
Transforming the Landscape of Manufacturing: Distributed Manufacturing Based on Desktop Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041004
. 10.1115/1.4006095
44.
Srai
,
J. S.
,
Kumar
,
M.
,
Graham
,
G.
,
Phillips
,
W.
,
Tooze
,
J.
,
Ford
,
S.
,
Beecher
,
P.
,
Raj
,
B.
,
Gregory
,
M.
,
Tiwari
,
M. K.
,
Ravi
,
B.
,
Neely
,
A.
,
Shankar
,
R.
,
Charnley
,
F.
, and
Tiwari
,
A.
,
2016
, “
Distributed Manufacturing: Scope, Challenges and Opportunities
,”
Int. J. Prod. Res.
,
54
(
23
), pp.
6917
6935
. 10.1080/00207543.2016.1192302
45.
Adair
,
K.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
,
2011
, “
Development of a Unique Topology for a Hard-Turning Micro-Scale Machine Tool
,”
J. Manuf. Process.
,
13
(
2
), pp.
75
84
. 10.1016/j.jmapro.2010.11.001
46.
Syahputra
,
H. P.
,
Ko
,
T. J.
, and
Chung
,
B. M.
,
2014
, “
Development of 2-Axis Hybrid Positioning System for Precision Contouring on Micro-Milling Operation
,”
J. Mech. Sci. Technol.
,
28
(
2
), pp.
691
697
. 10.1007/s12206-013-1132-5
47.
Huo
,
D.
,
Cheng
,
K.
, and
Wardle
,
F.
,
2010
, “
Design of a Five-Axis Ultra-Precision Micro-Milling Machine-UltraMill. Part 1: Holistic Design Approach, Design Considerations and Specifications
,”
Int. J. Adv. Manuf. Technol.
,
47
(
9–12
), pp.
867
877
. 10.1007/s00170-009-2128-2
48.
Huo
,
D.
,
Cheng
,
K.
, and
Wardle
,
F.
,
2010
, “
Design of a Five-Axis Ultra-Precision Micro-Milling Machine-UltraMill. Part 2: Integrated Dynamic Modelling, Design Optimisation and Analysis
,”
Int. J. Adv. Manuf. Technol.
,
47
(
9–12
), pp.
879
890
. 10.1007/s00170-009-2129-1
49.
Zhu
,
J.
,
Kapoor
,
S. G.
,
Devor
,
R. E.
, and
Park
,
J. K.
,
2013
, “
A Porous-Restricted Aerostatic Lead Screw Actuator for High Performance Microscale Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011002
. 10.1115/1.4023111
50.
Jahanmir
,
S.
,
Ren
,
Z.
,
Heshmat
,
H.
, and
Tomaszewski
,
M.
,
2010
, “
Design and Evaluation of an Ultrahigh Speed Micro-Machining Spindle
,”
Mach. Sci. Technol.
,
14
(
2
), pp.
224
243
. 10.1080/10910344.2010.489406
51.
“Mohawk Innovative Technology Inc. (MITI)—Micromachining”
,
2019
, http://mohawkinnovative.com/oil-free-turbomachinery/micromachining/, Accessed December 2019.
52.
Kimman
,
M. H.
,
Langen
,
H. H.
, and
Munnig Schmidt
,
R. H.
,
2010
, “
A Miniature Milling Spindle With Active Magnetic Bearings
,”
Mechatronics
,
20
(
2
), pp.
224
235
. 10.1016/j.mechatronics.2009.11.010
53.
Kimman
,
M. H.
,
2010
,
Design of a Micro Milling Setup With an Active Magnetic Bearing Spindle
, Ph.D. dissertation,
Delft University of Technology
,
Delft, The Netherlands
.
54.
Gao
,
S.
,
Cheng
,
K.
,
Ding
,
H.
, and
Fu
,
H.
,
2016
, “
Multiphysics-Based Design and Analysis of the High-Speed Aerostatic Spindle With Application to Micro-Milling
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
230
(
7
), pp.
852
871
. 10.1177/1350650115619609
55.
Nahata
,
S.
,
Onler
,
R.
, and
Burak Ozdoganlar
,
O.
,
2019
, “
Radial Throw in Micromilling: A Simulation-Based Study to Analyze the Effects on Surface Quality and Uncut Chip Thickness Mechanical Micromachining
,”
ASME J. Micro Nano-Manuf.
,
7
(
1
), p.
010907
. 10.1115/1.4043176
56.
Liu
,
X.
,
2012
, “
In Situ Metrology System for Micro-Milling Machine
,”
J. Manuf. Syst.
,
31
(
1
), pp.
15
21
. 10.1016/j.jmsy.2010.11.001
57.
Okazaki
,
Y.
,
Mishima
,
N.
, and
Ashida
,
K.
,
2004
, “
Microfactory—Concept, History, and Developments
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
837
844
. 10.1115/1.1823491
58.
Honegger
,
A.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2006
, “
A Hybrid Methodology for Kinematic Calibration of Micro/Meso-Scale Machine Tools (mMTs)
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
513
522
. 10.1115/1.2162910
59.
Lee
,
J. H.
,
Liu
,
Y.
, and
Yang
,
S. H.
,
2006
, “
Accuracy Improvement of Miniaturized Machine Tool: Geometric Error Modeling and Compensation
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1508
1516
. 10.1016/j.ijmachtools.2005.09.004
60.
Caballero-Ruiz
,
A.
,
Ruiz-Huerta
,
L.
,
Baidyk
,
T.
, and
Kussul
,
E.
,
2007
, “
Geometrical Error Analysis of a CNC Micro-Machine Tool
,”
Mechatronics
,
17
(
4–5
), pp.
231
243
. 10.1016/j.mechatronics.2007.01.004
61.
Bourne
,
K. A.
,
Jun
,
M. B. G.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2008
, “
An Acoustic Emission-Based Method for Determining Contact Between a Tool and Workpiece at the Microscale
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031101
. 10.1115/1.2917285
62.
Goo
,
C.-S.
,
Lim
,
G.
, and
Jun
,
M. B. G.
,
2011
, “
Experimental Analysis of an Acoustic Emission-Based Tool Tip Touch-Off Detection for Micro End Milling
,”
J. Manuf. Technol. Res.
,
3
(
3
), pp.
167
181
.
63.
Min
,
S.
,
Lidde
,
J.
,
Raue
,
N.
, and
Dornfeld
,
D.
,
2011
, “
Acoustic Emission Based Tool Contact Detection for Ultra-Precision Machining
,”
CIRP Ann.—Manuf. Technol.
,
60
(
1
), pp.
141
144
. 10.1016/j.cirp.2011.03.079
64.
Broel-Plater
,
B.
,
Matuszak
,
M.
, and
Waszczuk
,
P.
,
2013
, “
Force-measurement Based Tool-Workpiece Contact Detection in Micromilling
,”
Pomiary Automatyka Robotyka
,
17
(
1
), pp.
42
46
.
65.
Roy
,
S.
,
Mandal
,
S.
, and
Nagahanumaiah
,
N.
,
2016
, “
Tool-workpiece Contact Detection in Micro-Milling Using Wireless-Aided Accelerometer Sensor
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
230
(
1
), pp.
182
187
. 10.1177/0954405415573850
66.
Popov
,
K.
,
Dimov
,
S.
,
Ivanov
,
A.
,
Pham
,
D. T.
, and
Gandarias
,
E.
,
2010
, “
New Tool-Workpiece Setting Up Technology for Micro-Milling
,”
Int. J. Adv. Manuf. Technol.
,
47
(
1–4
), pp.
21
27
. 10.1007/s00170-009-2055-2
67.
Liu
,
X.
, and
Zhu
,
W.
,
2017
, “
Development of a Fiber Optical Occlusion Based Non-Contact Automatic Tool Setter for a Micro-Milling Machine
,”
Rob. Comput. Integr. Manuf.
,
43
, pp.
12
17
. 10.1016/j.rcim.2016.04.002
68.
Park
,
H. W.
,
Bin Park
,
Y.
, and
Liang
,
S. Y.
,
2012
, “
Non-Contact Measurement Methods for Micro- and Meso-Scale Tool Positioning
,”
Int. J. Adv. Manuf. Technol.
,
60
(
1–4
), pp.
251
260
. 10.1007/s00170-011-3601-2
69.
Zhang
,
X.
,
Shi
,
Y.
,
Zhang
,
B.
, and
Si
,
C.
,
2018
, “
A Study of On-Machine Micro Milling Cutter Condition Inspection Based on Machine Vision
,”
J. Micro Nano-Manuf.
,
6
(
3
), p.
31007
. 10.1115/1.4040559
70.
Tansel
,
I. N.
,
Bao
,
W. Y.
,
Reen
,
N. S.
, and
Kropas-Hughes
,
C. V.
,
2005
, “
Genetic Tool Monitor (GTM) for Micro-End-Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
45
(
3
), pp.
293
299
. 10.1016/j.ijmachtools.2004.08.013
71.
Jemielniak
,
K.
, and
Arrazola
,
P. J.
,
2008
, “
Application of AE and Cutting Force Signals in Tool Condition Monitoring in Micro-Milling
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
2
), pp.
97
102
. 10.1016/j.cirpj.2008.09.007
72.
Malekian
,
M.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2009
, “
Tool Wear Monitoring of Micro-Milling Operations
,”
J. Mater. Process. Technol.
,
209
(
10
), pp.
4903
4914
. 10.1016/j.jmatprotec.2009.01.013
73.
Kang
,
I. S.
,
Kim
,
J. H.
,
Hong
,
C.
, and
Kim
,
J. S.
,
2010
, “
Development and Evaluation of Tool Dynamometer for Measuring High Frequency Cutting Forces in Micro Milling
,”
Int. J. Precis. Eng. Manuf.
,
11
(
6
), pp.
817
821
. 10.1007/s12541-010-0098-9
74.
Bediz
,
B.
,
Kumar
,
U.
,
Schmitz
,
T. L.
, and
Burak Ozdoganlar
,
O.
,
2012
, “
Modeling and Experimentation for Three-Dimensional Dynamics of Endmills
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
39
50
. 10.1016/j.ijmachtools.2011.09.005
75.
Bediz
,
B.
,
Korkmaz
,
E.
, and
Burak Ozdoganlar
,
O.
,
2014
, “
An Impact Excitation System for Repeatable, High-Bandwidth Modal Testing of Miniature Structures
,”
J. Sound Vib.
,
333
(
13
), pp.
2743
2761
. 10.1016/j.jsv.2014.02.022
76.
Ogedengbe
,
T. I.
,
2014
, “
Tool Condition Monitoring on Micro Milling Machine Using Current Signature and Radial Basis Function (RBF) Network
,”
Res. J. Eng. Appl. Sci.
,
3
(
3
), pp.
208
215
.
77.
Hsieh
,
W. H.
,
Lu
,
M. C.
, and
Chiou
,
S. J.
,
2012
, “
Application of Backpropagation Neural Network for Spindle Vibration-Based Tool Wear Monitoring in Micro-Milling
,”
Int. J. Adv. Manuf. Technol.
,
61
(
1–4
), pp.
53
61
. 10.1007/s00170-011-3703-x
78.
Shin
,
B. C.
,
Ha
,
S. J.
,
Cho
,
M. W.
,
Il Seo
,
T.
,
Yoon
,
G. S.
, and
Heo
,
Y. M.
,
2010
, “
Indirect Cutting Force Measurement in the Micro End-Milling Process Based on Frequency Analysis of Sensor Signals
,”
J. Mech. Sci. Technol.
,
24
(
1
), pp.
165
168
. 10.1007/s12206-009-1121-x
79.
Griffin
,
J. M.
,
Diaz
,
F.
,
Geerling
,
E.
,
Clasing
,
M.
,
Ponce
,
V.
,
Taylor
,
C.
,
Turner
,
S.
,
Michael
,
E. A.
,
Patricio Mena
,
F.
, and
Bronfman
,
L.
,
2017
, “
Control of Deviations and Prediction of Surface Roughness From Micro Machining of THz Waveguides Using Acoustic Emission Signals
,”
Mech. Syst. Signal Process.
,
85
, pp.
1020
1034
. 10.1016/j.ymssp.2016.09.016
80.
Lu
,
M. C.
, and
Wan
,
B. S.
,
2013
, “
Study of High-Frequency Sound Signals for Tool Wear Monitoring in Micromilling
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1785
1792
.
81.
Szydłowski
,
M.
,
Powałka
,
B.
,
Matuszak
,
M.
, and
Kochmański
,
P.
,
2016
, “
Machine Vision Micro-Milling Tool Wear Inspection by Image Reconstruction and Light Reflectance
,”
Precis. Eng.
,
44
, pp.
236
244
. 10.1016/j.precisioneng.2016.01.003
82.
Dai
,
Y.
, and
Zhu
,
K.
,
2018
, “
A Machine Vision System for Micro-Milling Tool Condition Monitoring
,”
Precis. Eng.
,
52
, pp.
183
191
. 10.1016/j.precisioneng.2017.12.006
83.
Chen
,
X.
,
Cheng
,
K.
, and
Wang
,
C.
,
2014
, “
Design of a Smart Turning Tool With Application to In-Process Cutting Force Measurement in Ultraprecision and Micro Cutting
,”
Manuf. Lett.
,
2
(
4
), pp.
112
117
. 10.1016/j.mfglet.2014.07.001
84.
Hansen
,
H. N.
,
Carneiro
,
K.
,
Haitjema
,
H.
, and
De Chiffre
,
L.
,
2006
, “
Dimensional Micro and Nano Metrology
,”
CIRP Ann.
,
55
(
2
), pp.
721
743
. 10.1016/j.cirp.2006.10.005
85.
Torres
,
C. D.
,
Heaney
,
P. J.
,
Sumant
,
A. V.
,
Hamilton
,
M. A.
,
Carpick
,
R. W.
, and
Pfefferkorn
,
F. E.
,
2009
, “
Analyzing the Performance of Diamond-Coated Micro End Mills
,”
Int. J. Mach. Tools Manuf.
,
49
(
7
), pp.
599
612
. 10.1016/j.ijmachtools.2009.02.001
86.
Nakamoto
,
K.
,
Katahira
,
K.
,
Ohmori
,
H.
,
Yamazaki
,
K.
, and
Aoyama
,
T.
,
2012
, “
A Study on the Quality of Micro-Machined Surfaces on Tungsten Carbide Generated by PCD Micro End-Milling
,”
CIRP Ann.
,
61
(
1
), pp.
567
570
. 10.1016/j.cirp.2012.03.112
87.
Aurich
,
J. C.
,
Engmann
,
J.
,
Schueler
,
G. M.
, and
Haberland
,
R.
,
2009
, “
Micro Grinding Tool for Manufacture of Complex Structures in Brittle Materials
,”
CIRP Ann.
,
58
(
1
), pp.
311
314
. 10.1016/j.cirp.2009.03.049
88.
Bissacco
,
G.
,
Hansen
,
H. N.
, and
De Chiffre
,
L.
,
2006
, “
Size Effects on Surface Generation in Micro Milling of Hardened Tool Steel
,”
CIRP Ann.
,
55
(
1
), pp.
593
596
. 10.1016/S0007-8506(07)60490-9
89.
Aramcharoen
,
A.
,
Mativenga
,
P. T.
,
Yang
,
S.
,
Cooke
,
K. E.
, and
Teer
,
D. G.
,
2008
, “
Evaluation and Selection of Hard Coatings for Micro Milling of Hardened Tool Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
14
), pp.
1578
1584
. 10.1016/j.ijmachtools.2008.05.011
90.
Weinert
,
K.
, and
Petzoldt
,
V.
,
2008
, “
Machining NiTi Micro-Parts by Micro-Milling
,”
Mater. Sci. Eng. A
,
481–482
, pp.
672
675
. 10.1016/j.msea.2006.10.220
91.
de Oliveira
,
F. B.
,
Rodrigues
,
A. R.
,
Coelho
,
R. T.
, and
de Souza
,
A. F.
,
2015
, “
Size Effect and Minimum Chip Thickness in Micromilling
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
39
54
. 10.1016/j.ijmachtools.2014.11.001
92.
Onler
,
R.
,
Korkmaz
,
E.
,
Kate
,
K.
,
Chinn
,
R. E.
,
Atre
,
S. V.
, and
Ozdoganlar
,
O. B.
,
2019
, “
Green Micromachining of Ceramics Using Tungsten Carbide Micro-Endmills
,”
J. Mater. Process. Technol.
,
267
, pp.
268
279
. 10.1016/j.jmatprotec.2018.12.009
93.
Nahata
,
S.
,
Onler
,
R.
,
Shekhar
,
S.
,
Korkmaz
,
E.
, and
Ozdoganlar
,
O. B.
,
2018
, “
Radial Throw in Micromachining: Measurement and Analysis
,”
Precis. Eng.
,
54
, pp.
21
32
. 10.1016/j.precisioneng.2018.04.005
94.
Vázquez
,
E.
,
Rodríguez
,
C. A.
,
Elías-Zúñiga
,
A.
, and
Ciurana
,
J.
,
2010
, “
An Experimental Analysis of Process Parameters to Manufacture Metallic Micro-Channels by Micro-Milling
,”
Int. J. Adv. Manuf. Technol.
,
51
(
9
), pp.
945
955
. 10.1007/s00170-010-2685-4
95.
Suzuki
,
H.
,
Moriwaki
,
T.
,
Yamamoto
,
Y.
, and
Goto
,
Y.
,
2007
, “
Precision Cutting of Aspherical Ceramic Molds With Micro PCD Milling Tool
,”
CIRP Ann.
,
56
(
1
), pp.
131
134
. 10.1016/j.cirp.2007.05.033
96.
Elfurjani
,
S.
,
Bayesteh
,
A.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2015
, “
Dimensional measurement based on rotating wire probe and acoustic emission
,”
Measurement
,
59
, pp.
329
336
. 10.1016/j.measurement.2014.09.016
97.
Özel
,
T.
,
Thepsonthi
,
T.
,
Ulutan
,
D.
, and
Kaftanolu
,
B.
,
2011
, “
Experiments and Finite Element Simulations on Micro-Milling of Ti-6Al-4V Alloy With Uncoated and cBN Coated Micro-Tools
,”
CIRP Ann.—Manuf. Technol.
,
60
(
1
), pp.
85
88
. 10.1016/j.cirp.2011.03.087
98.
Thepsonthi
,
T.
, and
Özel
,
T.
,
2013
, “
Experimental and Finite Element Simulation Based Investigations on Micro-Milling Ti-6Al-4V Titanium Alloy: Effects of cBN Coating on Tool Wear
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
532
542
. 10.1016/j.jmatprotec.2012.11.003
99.
Ucun
,
I.
,
Aslantas
,
K.
, and
Bedir
,
F.
,
2013
, “
An Experimental Investigation of the Effect of Coating Material on Tool Wear in Micro Milling of Inconel 718 Super Alloy
,”
Wear
,
300
(
1–2
), pp.
8
19
. 10.1016/j.wear.2013.01.103
100.
Biermann
,
D.
,
Steiner
,
M.
, and
Krebs
,
E.
,
2013
, “
Investigation of Different Hard Coatings for Micromilling of Austenitic Stainless Steel
,”
Proc. CIRP
,
7
, pp.
246
251
. 10.1016/j.procir.2013.05.042
101.
Lei
,
X.
,
Shen
,
B.
,
Cheng
,
L.
,
Sun
,
F.
, and
Chen
,
M.
,
2014
, “
Influence of Pretreatment and Deposition Parameters on the Properties and Cutting Performance of NCD Coated PCB Micro Drills
,”
Int. J. Refract. Met. Hard Mater.
,
43
, pp.
30
41
. 10.1016/j.ijrmhm.2013.10.016
102.
Aslantas
,
K.
,
Hopa
,
H. E.
,
Percin
,
M.
,
Ucun
,
I.
, and
Çicek
,
A.
,
2016
, “
Cutting Performance of Nano-Crystalline Diamond (NCD) Coating in Micro-Milling of Ti6Al4V Alloy
,”
Precis. Eng.
,
45
, pp.
55
66
. 10.1016/j.precisioneng.2016.01.009
103.
Swain
,
N.
,
Venkatesh
,
V.
,
Kumar
,
P.
,
Srinivas
,
G.
,
Ravishankar
,
S.
, and
Barshilia
,
H. C.
,
2017
, “
An Experimental Investigation on the Machining Characteristics of Nimonic 75 Using Uncoated and TiAlN Coated Tungsten Carbide Micro-end Mills
,”
CIRP J. Manuf. Sci. Technol.
,
16
, pp.
34
42
. 10.1016/j.cirpj.2016.07.005
104.
Bandapalli
,
C.
,
Sutaria
,
B. M.
,
Prasad Bhatt
,
D. V.
, and
Singh
,
K. K.
,
2018
, “
Tool Wear Analysis of Micro End Mills—Uncoated and PVD Coated TiAlN & AlTiN in High Speed Micro Milling of Titanium Alloy—Ti-0.3Mo-0.8Ni
,”
Proc. CIRP
,
77
, pp.
626
629
. 10.1016/j.procir.2018.08.191
105.
González-García
,
P.
,
Urones-Garrote
,
E.
,
Ávila-Brande
,
D.
,
Gómez-Herrero
,
A.
, and
Otero-Díaz
,
L. C.
,
2010
, “
Structural Study of Carbon Nanomaterials Prepared by Chlorination of Tungsten Carbide and bis(Cyclopentadienyl)Tungsten Dichloride
,”
Carbon
,
48
(
13
), pp.
3667
3675
. 10.1016/j.carbon.2010.06.003
106.
Fang
,
Z. Z.
,
Wang
,
X.
,
Ryu
,
T.
,
Hwang
,
K. S.
, and
Sohn
,
H. Y.
,
2009
, “
Synthesis, Sintering, and Mechanical Properties of Nanocrystalline Cemented Tungsten Carbide—A Review
,”
Int. J. Refract. Met. Hard Mater.
,
27
(
2
), pp.
288
299
. 10.1016/j.ijrmhm.2008.07.011
107.
Chyan
,
H. C.
, and
Ehmann
,
K. F.
,
2002
, “
Curved Helical Drill Points for Microhole Drilling
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
216
(
1
), pp.
61
75
. 10.1243/0954405021519708
108.
Jun
,
M. B. G.
,
Joshi
,
S. S.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
An Experimental Evaluation of an Atomization-Based Cutting Fluid Application System for Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031118
. 10.1115/1.2738961
109.
Rukosuyev
,
M.
,
Goo
,
C. S.
, and
Jun
,
M. B. G.
,
2010
, “
Understanding the Effects of the System Parameters of an Ultrasonic Cutting Fluid Application System for Micro-Machining
,”
J. Manuf. Process.
,
12
(
2
), pp.
92
98
. 10.1016/j.jmapro.2010.06.002
110.
Burton
,
G.
,
Goo
,
C. S.
,
Zhang
,
Y.
, and
Jun
,
M. B. G.
,
2014
, “
Use of Vegetable Oil in Water Emulsion Achieved Through Ultrasonic Atomization as Cutting Fluids in Micro-Milling
,”
J. Manuf. Process.
,
16
(
3
), pp.
405
413
. 10.1016/j.jmapro.2014.04.005
111.
Zhang
,
Y.
, and
Jun
,
M. B. G.
,
2013
, “
Mixed Jet of Independently Atomized Water and Oil Sprays as Cutting Fluids in Micro-Milling
,”
Manuf. Lett.
,
1
(
1
), pp.
13
16
. 10.1016/j.mfglet.2013.08.003
112.
Ghai
,
I.
,
Wentz
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Samuel
,
J.
,
2010
, “
Droplet Behavior on a Rotating Surface for Atomization-Based Cutting Fluid Application in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011017
. 10.1115/1.4000859
113.
Ghai
,
I.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2013
, “
Analysis of Droplet Spreading on a Rotating Surface and the Prediction of Cooling and Lubrication Performance of an Atomization-Based Cutting Fluid System
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031003
. 10.1115/1.4024153
114.
Chu
,
B.
,
Singh
,
E.
,
Koratkar
,
N.
, and
Samuel
,
J.
,
2013
, “
Graphene-enhanced Environmentally-Benign Cutting Fluids for High-Performance Micro-Machining Applications
,”
J. Nanosci. Nanotechnol.
,
13
(
8
), pp.
5500
5504
. 10.1166/jnn.2013.7538
115.
Abdul Sani
,
A. S.
,
Rahim
,
E. A.
,
Sharif
,
S.
, and
Sasahara
,
H.
,
2019
, “
Machining Performance of Vegetable Oil With Phosphonium- and Ammonium-Based Ionic Liquids via MQL Technique
,”
J. Clean. Prod.
,
209
, pp.
947
964
. 10.1016/j.jclepro.2018.10.317
116.
Abdul Sani
,
A. S.
,
Rahim
,
E. A.
,
Sharif
,
S.
, and
Sasahara
,
H.
,
2019
, “
The Influence of Modified Vegetable Oils on Tool Failure Mode and Wear Mechanisms When Turning AISI 1045
,”
Tribol. Int.
,
129
, pp.
347
362
. 10.1016/j.triboint.2018.08.038
117.
Rifat
,
M.
,
Rahman
,
M. H.
, and
Das
,
D.
,
2017
, “
A Review on Application of Nanofluid MQL in Machining
,”
AIP Conf. Proc.
,
1919
(
1
), pp.
020015
. 10.1063/1.5018533
118.
Hegab
,
H.
,
Kishawy
,
H. A.
,
Gadallah
,
M. H.
,
Umer
,
U.
, and
Deiab
,
I.
,
2018
, “
On Machining of Ti-6Al-4V Using Multi-Walled Carbon Nanotubes-Based Nano-Fluid Under Minimum Quantity Lubrication
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
1593
1603
. 10.1007/s00170-018-2028-4
119.
Hegab
,
H.
,
Umer
,
U.
,
Deiab
,
I.
, and
Kishawy
,
H.
,
2018
, “
Performance Evaluation of Ti–6Al–4V Machining Using Nano-Cutting Fluids Under Minimum Quantity Lubrication
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9–12
), pp.
4229
4241
. 10.1007/s00170-017-1527-z
120.
Smith
,
P. J.
,
Chu
,
B.
,
Singh
,
E.
,
Chow
,
P.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2015
, “
Graphene Oxide Colloidal Suspensions Mitigate Carbon Diffusion During Diamond Turning of Steel
,”
J. Manuf. Process.
,
17
, pp.
41
47
. 10.1016/j.jmapro.2014.10.007
121.
Chu
,
B.
,
Singh
,
E.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2015
, “
Graphene Oxide Colloidal Suspensions as Cutting Fluids for Micromachining—Part I: Fabrication and Performance Evaluation
,”
J. Micro Nano-Manuf.
,
3
(
4
), p.
041002
. 10.1115/1.4031135
122.
Chu
,
B.
, and
Samuel
,
J.
,
2015
, “
Graphene Oxide Colloidal Suspensions as Cutting Fluids for Micromachining—Part II: Droplet Dynamics and Film Formation
,”
J. Micro Nano-Manuf.
,
3
(
4
), p.
041003
. 10.1115/1.4031136
123.
Samuel
,
J.
,
Rafiee
,
J.
,
Dhiman
,
P.
,
Yu
,
Z. Z.
, and
Koratkar
,
N.
,
2011
, “
Graphene Colloidal Suspensions as High Performance Semi-Synthetic Metal-Working Fluids
,”
J. Phys. Chem. C
,
115
(
8
), pp.
3410
3415
. 10.1021/jp110885n
124.
Chu
,
B.
,
Shi
,
Y.
, and
Samuel
,
J.
,
2016
, “
Mitigation of Chemical Wear by Graphene Platelets During Diamond Cutting of Steel
,”
Carbon
,
108
, pp.
61
71
. 10.1016/j.carbon.2016.06.036
125.
Xia
,
T.
,
Kaynak
,
Y.
,
Arvin
,
C.
, and
Jawahir
,
I. S.
,
2016
, “
Cryogenic Cooling-Induced Process Performance and Surface Integrity in Drilling CFRP Composite Material
,”
Int. J. Adv. Manuf. Technol.
,
82
(
1–4
), pp.
605
616
. 10.1007/s00170-015-7284-y
126.
Bruschi
,
S.
,
Tristo
,
G.
,
Rysava
,
Z.
,
Bariani
,
P. F.
,
Umbrello
,
D.
, and
De Chiffre
,
L.
,
2016
, “
Environmentally Clean Micromilling of Electron Beam Melted Ti6Al4V
,”
J. Clean. Prod.
,
133
, pp.
932
941
. 10.1016/j.jclepro.2016.06.035
127.
Supekar
,
S. D.
,
Gozen
,
B. A.
,
Bediz
,
B.
,
Ozdoganlar
,
O. B.
, and
Skerlos
,
S. J.
,
2013
, “
Feasibility of Supercritical Carbon Dioxide Based Metalworking Fluids in Micromilling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
024501
. 10.1115/1.4023375
128.
Ucun
,
I.
,
Aslantasx
,
K.
, and
Bedir
,
F.
,
2015
, “
The Effect of Minimum Quantity Lubrication and Cryogenic Pre-Cooling on Cutting Performance in the Micro Milling of Inconel 718
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
229
(
12
), pp.
2134
2143
. 10.1177/0954405414546144
129.
Kim
,
J. S.
,
Kim
,
J. W.
, and
Lee
,
S. W.
,
2017
, “
Experimental Characterization on Micro-end Milling of Titanium Alloy Using Nanofluid Minimum Quantity Lubrication With Chilly Gas
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2741
2749
. 10.1007/s00170-016-9965-6
130.
Altman
,
R. G.
,
Nowak
,
J. F.
, and
Samuel
,
J.
,
2017
, “
An In-Process Intervention to Mitigate the Effect of Built-up Edges in Micromilling
,”
ASME J. Micro Nano-Manuf.
,
5
(
4
), p.
041001
. 10.1115/1.4037574
131.
de Assis
,
C. L. F.
,
Jasinevicius
,
R. G.
, and
Rodrigues
,
A. R.
,
2015
, “
Micro End-Milling of Channels Using Ultrafine-Grained Low-Carbon Steel
,”
Int. J. Adv. Manuf. Technol.
,
77
(
5–8
), pp.
1155
1165
. 10.1007/s00170-014-6503-2
132.
Bonaiti
,
G.
,
Parenti
,
P.
,
Annoni
,
M.
, and
Kapoor
,
S.
,
2017
, “
Micro-Milling Machinability of DED Additive Titanium Ti-6Al-4V
,”
Proc. Manuf.
,
10
, pp.
497
509
. 10.1016/j.promfg.2017.07.104
133.
Gao
,
Q.
, and
Chen
,
X.
,
2019
, “
Experimental Research on Micro-Milling Force of a Single-Crystal Nickel-Based Superalloy
,”
Int. J. Adv. Manuf. Technol.
,
102
(
1–4
), pp.
595
604
. 10.1007/s00170-018-03211-x
134.
Aramcharoen
,
A.
, and
Mativenga
,
P. T.
,
2009
, “
Size Effect and Tool Geometry in Micromilling of Tool Steel
,”
Precis. Eng.
,
33
(
4
), pp.
402
407
. 10.1016/j.precisioneng.2008.11.002
135.
dos Santos
,
A. G.
,
da Silva
,
M. B.
, and
Jackson
,
M. J.
,
2018
, “
Tungsten Carbide Micro-Tool Wear When Micro Milling UNS S32205 Duplex Stainless Steel
,”
Wear
,
414–415
, pp.
109
117
. 10.1016/j.wear.2018.08.007
136.
Lopes Mougo
,
A.
,
de Oliveira Campos
,
F.
, and
Araujo
,
A. C.
,
2018
, “
Mechanistic Study on Micromilling of the Super Duplex Stainless Steel UNS S32750
,”
J. Manuf. Process.
,
34A
, pp.
31
39
. 10.1016/j.jmapro.2018.05.017
137.
Calzada
,
K. A.
,
2010
,
Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Composites
, M.S. thesis,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
138.
Kim
,
J. W.
,
Nam
,
J.
, and
Lee
,
S. W.
,
2019
, “
Experimental Study on Micro-Drilling of Unidirectional Carbon Fiber Reinforced Plastic (UD-CFRP) Composite Using Nano-Solid Lubrication
,”
J. Manuf. Process.
,
43B
, pp.
46
53
. 10.1016/j.jmapro.2019.04.022
139.
Liu
,
H.
,
Xie
,
W.
,
Sun
,
Y.
,
Zhang
,
J.
, and
Chen
,
N.
,
2018
, “
Investigations on Micro-Cutting Mechanism and Surface Quality of Carbon Fiber-Reinforced Plastic Composites
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3655
3664
. 10.1007/s00170-017-1110-7
140.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
,
2006
, “
Experimental Investigation of the Machinability of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
465
473
. 10.1115/1.2137753
141.
Samuel
,
J.
,
Dikshit
,
A.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
,
2009
, “
Effect of Carbon Nanotube (CNT) Loading on the Thermomechanical Properties and the Machinability of CNT-Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
0310081
.
142.
Mahmoodi
,
M.
,
Mostofa
,
M. G.
,
Jun
,
M.
, and
Park
,
S. S.
,
2013
, “
Characterization and Micromilling of Flow Induced Aligned Carbon Nanotube Nanocomposites
,”
ASME J. Micro Nano-Manuf.
,
1
(
1
), p.
011009
. 10.1115/1.4023290
143.
Kumar
,
M. N.
,
Mahmoodi
,
M.
,
TabkhPaz
,
M.
,
Park
,
S. S.
, and
Jin
,
X.
,
2017
, “
Characterization and Micro End Milling of Graphene Nano Platelet and Carbon Nanotube Filled Nanocomposites
,”
J. Mater. Process. Technol.
,
249
(
1
), pp.
96
107
. 10.1016/j.jmatprotec.2017.06.005
144.
Arora
,
I.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2012
, “
Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets
,”
ASME 2012 International Manufacturing Science and Engineering Conference (MSEC)
,
Notre Dame, IN
,
June 4–8
.
145.
Chu
,
B.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2015
, “
Micromilling Responses of Hierarchical Graphene Composites
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011002
.
146.
Conward
,
M.
, and
Samuel
,
J.
,
2016
, “
Machining Characteristics of the Haversian and Plexiform Components of Bovine Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
525
534
. 10.1016/j.jmbbm.2016.03.017
147.
Nowak
,
J. F.
, and
Samuel
,
J.
,
2019
, “
Quantifying Machining Outputs of Pristine Human Teeth Relevant to Dental Preparation Procedures
,”
J. Mech. Behav. Biomed. Mater.
,
91
, pp.
1
9
. 10.1016/j.jmbbm.2018.11.008
148.
Che
,
D.
,
Zhang
,
W.
, and
Ehmann
,
K.
,
2017
, “
Chip Formation and Force Responses in Linear Rock Cutting: An Experimental Study
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011011
. 10.1115/1.4033905
149.
Zhang
,
L.
, and
Huang
,
H.
,
2019
, “
Micro Machining of Bulk Metallic Glasses: A Review
,”
Int. J. Adv. Manuf. Technol.
,
100
(
1–4
), pp.
637
661
. 10.1007/s00170-018-2726-y
150.
Meagher
,
P.
,
O’Cearbhaill
,
E. D.
,
Byrne
,
J. H.
, and
Browne
,
D. J.
,
2016
, “
Bulk Metallic Glasses for Implantable Medical Devices and Surgical Tools
,”
Adv. Mater.
,
28
(
27
), pp.
5755
5762
. 10.1002/adma.201505347
151.
Zhu
,
J.
,
Kim
,
H. J.
, and
Kapoor
,
S. G.
,
2013
, “
Microscale Drilling of Bulk Metallic Glass
,”
J. Micro Nano-Manuf.
,
1
(
4
), p.
041004
. 10.1115/1.4025538
152.
Cho
,
M. W.
,
Kim
,
D. W.
, and
Cho
,
W. S.
,
2007
, “
Analysis of Micro-Machining Characteristics of Si3N4-hBN Composites
,”
J. Eur. Ceram. Soc.
,
27
(
2–3
), pp.
1259
1265
. 10.1016/j.jeurceramsoc.2006.08.002
153.
Arif
,
M.
,
Zhang
,
X.
,
Rahman
,
M.
, and
Kumar
,
S.
,
2013
, “
A Predictive Model of the Critical Undeformed Chip Thickness for Ductile-Brittle Transition in Nano-Machining of Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
114
122
. 10.1016/j.ijmachtools.2012.08.005
154.
Arif
,
M.
,
Rahman
,
M.
, and
San
,
W. Y.
,
2012
, “
An Experimental Investigation Into Micro Ball End-Milling of Silicon
,”
J. Manuf. Process.
,
14
(
1
), pp.
52
61
. 10.1016/j.jmapro.2011.09.004
155.
Choong
,
Z. J.
,
Huo
,
D.
,
Degenaar
,
P.
, and
O’Neill
,
A.
,
2019
, “
Micro-Machinability and Edge Chipping Mechanism Studies on Diamond Micro-Milling of Monocrystalline Silicon
,”
J. Manuf. Process.
,
38
, pp.
93
103
. 10.1016/j.jmapro.2019.01.004
156.
Fu
,
H. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1984
, “
A Mechanistic Model for the Prediction of the Force System in Face Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
106
(
1
), pp.
81
88
.
157.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
202
209
. 10.1115/1.1556402
158.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part I: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
685
694
. 10.1115/1.1813470
159.
Vogler
,
M. P.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
695
705
. 10.1115/1.1813471
160.
Jun
,
M. B. G.
,
Goo
,
C.
,
Malekian
,
M.
, and
Park
,
S.
,
2012
, “
A New Mechanistic Approach for Micro End Milling Force Modeling
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011006
. 10.1115/1.4005429
161.
Lee
,
H. U.
,
Cho
,
D.-W.
, and
Ehmann
,
K. F.
,
2008
, “
A Mechanistic Model of Cutting Forces in Micro-End-Milling With Cutting-Condition-Independent Cutting Force Coefficients
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031102
. 10.1115/1.2917300
162.
Annoni
,
M.
,
Pusterla
,
N.
,
Rebaioli
,
L.
, and
Semeraro
,
Q.
,
2016
, “
Calibration and Validation of a Mechanistic Micromilling Force Prediction Model
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011001
. 10.1115/1.4030210
163.
Zhou
,
Y.
,
Tian
,
Y.
,
Jing
,
X.
, and
Ehmann
,
K. F.
,
2017
, “
A Novel Instantaneous Uncut Chip Thickness Model for Mechanistic Cutting Force Model in Micro-End-Milling
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2305
2319
. 10.1007/s00170-017-0638-x
164.
Abdelrahman Elkaseer
,
A. M.
,
Dimov
,
S. S.
,
Popov
,
K. B.
,
Negm
,
M.
, and
Minev
,
R.
,
2012
, “
Modeling the Material Microstructure Effects on the Surface Generation Process in Microendmilling of Dual-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
044501
. 10.1115/1.4006851
165.
Conward
,
M.
,
2018
,
Effects of Haversian and Plexiform Components on the Machining of Bovine Cortical Bone.
,
Rensselaer Polytechnic Institute, Ph.D. Dissertation, ProQuest Dissertations Publishing
,
Ann Arbor, MI
.
166.
Anand
,
R. S.
, and
Patra
,
K.
,
2017
, “
Mechanistic Cutting Force Modelling for Micro-Drilling of CFRP Composite Laminates
,”
CIRP J. Manuf. Sci. Technol.
,
16
, pp.
55
63
. 10.1016/j.cirpj.2016.07.002
167.
Park
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2004
, “
Mechanistic Cutting Process Calibration via Microstructure-Level Finite Element Simulation Model
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
706
709
. 10.1115/1.1813480
168.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2006
, “
Chip Formation During Microscale Cutting of a Medium Carbon Steel
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
467
481
. 10.1016/j.ijmachtools.2005.07.019
169.
Davoudinejad
,
A.
,
Parenti
,
P.
, and
Annoni
,
M.
,
2017
, “
3D Finite Element Prediction of Chip Flow, Burr Formation, and Cutting Forces in Micro End-Milling of Aluminum 6061-T6
,”
Front. Mech. Eng.
,
12
(
2
), pp.
203
214
. 10.1007/s11465-017-0421-6
170.
Davoudinejad
,
A.
,
Tosello
,
G.
,
Parenti
,
P.
, and
Annoni
,
M.
,
2017
, “
3D Finite Element Simulation of Micro End-Milling by Considering the Effect of Tool Run-out
,”
Micromachines
,
8
(
6
), p.
187
(20p.). 10.3390/mi8060187
171.
Ayed
,
Y.
,
Robert
,
C.
,
Germain
,
G.
, and
Ammar
,
A.
,
2017
, “
Orthogonal Micro-Cutting Modeling of the Ti17 Titanium Alloy Using the Crystal Plasticity Theory
,”
Finite Elem. Anal. Des.
,
137
, pp.
43
55
. 10.1016/j.finel.2017.08.002
172.
Park
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2006
, “
Microstructure-level Model for the Prediction of Tool Failure in WC-Co Cutting Tool Materials
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
739
748
. 10.1115/1.2194233
173.
Calzada
,
K. A.
,
Kapoor
,
S. G.
,
Devor
,
R. E.
,
Samuel
,
J.
, and
Srivastava
,
A. K.
,
2012
, “
Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Polymer Composites
,”
J. Manuf. Process.
,
14
(
2
), pp.
141
149
. 10.1016/j.jmapro.2011.09.005
174.
Jiang
,
L.
,
Nath
,
C.
,
Samuel
,
J.
, and
Kapoor
,
S. G.
,
2014
, “
Estimating the Cohesive Zone Model Parameters of Carbon Nanotube–Polymer Interface for Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031004
. 10.1115/1.4024941
175.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
A Microstructure-Level Material Model for Simulating the Machining of Carbon Nanotube Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031110
. 10.1115/1.2917564
176.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
Microstructure-Level Machining Simulation of Carbon Nanotube Reinforced Polymer Composites—Part II: Model Interpretation and Application
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031115
. 10.1115/1.2927431
177.
Samuel
,
J.
,
Kapoor
,
S. G.
,
Devor
,
R. E.
, and
Hsia
,
K. J.
,
2010
, “
Effect of Microstructural Parameters on the Machinability of Aligned Carbon Nanotube Composites
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051012
. 10.1115/1.4002495
178.
Teng
,
X.
,
Huo
,
D.
,
Chen
,
W.
,
Wong
,
E.
,
Zheng
,
L.
, and
Shyha
,
I.
,
2018
, “
Finite Element Modelling on Cutting Mechanism of Nano Mg/SiC Metal Matrix Composites Considering Cutting Edge Radius
,”
J. Manuf. Process.
,
32
, pp.
116
126
. 10.1016/j.jmapro.2018.02.006
179.
Pen
,
H.
,
Guo
,
J.
,
Cao
,
Z.
,
Wang
,
X.
, and
Wang
,
Z.
,
2018
, “
Finite Element Simulation of the Micromachining of Nanosized-Silicon-Carbide-Particle Reinforced Composite Materials Based on the Cohesive Zone Model
,”
Nanotechnol. Precis. Eng.
,
1
(
4
), pp.
242
247
. 10.1016/j.npe.2018.12.003
180.
Wang
,
Y.
,
Liao
,
W.
,
Yang
,
K.
,
Teng
,
X.
, and
Chen
,
W.
,
2019
, “
Simulation and Experimental Investigation on the Cutting Mechanism and Surface Generation in Machining SiC p /Al MMCs
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1393
1404
. 10.1007/s00170-018-2769-0
181.
Komanduri
,
R.
, and
Raff
,
L. M.
,
2001
, “
A Review on the Molecular Dynamics Simulation of Machining at the Atomic Scale
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
215
(
12
), pp.
1639
1672
. 10.1177/095440540121501201
182.
Jiang
,
W. G.
,
Wu
,
Y.
,
Qin
,
Q. H.
,
Li
,
D. S.
,
Liu
,
X. B.
, and
Fu
,
M. F.
,
2018
, “
A Molecular Dynamics Based Cohesive Zone Model for Predicting Interfacial Properties Between Graphene Coating and Aluminum
,”
Comput. Mater. Sci.
,
151
, pp.
117
123
. 10.1016/j.commatsci.2018.05.008
183.
Pei
,
Q. X.
,
Lu
,
C.
,
Lee
,
H. P.
, and
Zhang
,
Y. W.
,
2009
, “
Study of Materials Deformation in Nanometric Cutting by Large-Scale Molecular Dynamics Simulations
,”
Nanoscale Res. Lett.
,
4
(
5
), pp.
444
451
. 10.1007/s11671-009-9268-z
184.
Zhu
,
P. Z.
,
Hu
,
Y. Z.
,
Ma
,
T. B.
, and
Wang
,
H.
,
2010
, “
Study of AFM-Based Nanometric Cutting Process Using Molecular Dynamics
,”
Appl. Surf. Sci.
,
256
(
23
), pp.
7160
7165
. 10.1016/j.apsusc.2010.05.044
185.
Ren
,
J.
,
Dong
,
Z.
,
Zhao
,
J.
, and
Liu
,
P.
,
2016
, “
A Novel Approach for Determining the Minimum Feed in Nanochannels Processing via Molecular Dynamics Simulation
,”
Appl. Surf. Sci.
,
369
, pp.
584
594
. 10.1016/j.apsusc.2016.02.024
186.
Kim
,
C. J.
,
Mayor
,
R.
, and
Ni
,
J.
,
2012
, “
Molecular Dynamics Simulations of Plastic Material Deformation in Machining With a Round Cutting Edge
,”
Int. J. Precis. Eng. Manuf.
,
13
(
8
), pp.
1303
1309
. 10.1007/s12541-012-0173-5
187.
Tong
,
Z.
,
Liang
,
Y.
,
Yang
,
X.
, and
Luo
,
X.
,
2014
, “
Investigation on the Thermal Effects During Nanometric Cutting Process While Using Nanoscale Diamond Tools
,”
Int. J. Adv. Manuf. Technol.
,
74
(
9–12
), pp.
1709
1718
. 10.1007/s00170-014-6087-x
188.
Lin
,
Y. C.
, and
Shiu
,
Y. C.
,
2017
, “
Effect of Crystallographic Orientation on Single Crystal Copper Nanogrooving Behaviors by MD Method
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9–12
), pp.
3207
3215
. 10.1007/s00170-016-9282-0
189.
Jayasena
,
B.
,
Reddy
,
C. D.
, and
Subbiah
,
S.
,
2013
, “
Separation, Folding and Shearing of Graphene Layers During Wedge-Based Mechanical Exfoliation
,”
Nanotechnology
,
24
(
20
), p.
205301
(8p.). 10.1088/0957-4484/24/20/205301
190.
Marian
,
J.
,
Wirth
,
B. D.
,
Diaz de la Rubia
,
T.
,
Perlado
,
J. M.
, and
Odette
,
G. R.
,
2001
, “
Dynamics of Self-Interstitial Migration in Fe-Cu Alloys
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
64
(
9
), p.
094303
(5p.). 10.1103/PhysRevB.64.094303
191.
Fattebert
,
J. L.
, and
Gygi
,
F.
,
2002
, “
Density Functional Theory for Efficient ab Initio Molecular Dynamics Simulations in Solution
,”
J. Comput. Chem.
,
23
(
6
), pp.
662
666
. 10.1002/jcc.10069
192.
Gupta
,
K.
,
Ozdoganlar
,
O. B.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2003
, “
Modeling and Prediction of Hole Profile in Drilling, Part 1: Modeling Drill Dynamics in the Presence of Drill Alignment Errors
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
6
13
. 10.1115/1.1536932
193.
Gupta
,
K.
,
Ozdoganlar
,
O. B.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2003
, “
Modeling and Prediction of Hole Profile in Drilling, Part 2: Modeling Hole Profile
,”
ASME. J. Manuf. Sci. Eng.
,
125
(
1
), pp.
14
20
. 10.1115/1.1536933
194.
Schmitz
,
T. L.
,
Couey
,
J.
,
Marsh
,
E.
,
Mauntler
,
N.
, and
Hughes
,
D.
,
2007
, “
Runout Effects in Milling: Surface Finish, Surface Location Error, and Stability
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
841
851
. 10.1016/j.ijmachtools.2006.06.014
195.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Bammann
,
D. J.
,
2002
, “
Microstructure-Level Modeling of Ductile Iron Machining
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
162
169
. 10.1115/1.1455642
196.
Lawson
,
B. L.
,
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2008
, “
Effects of Crystallographic Anistropy on Orthogonal Micromachining of Single-Crystal Aluminum
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031116
. 10.1115/1.2917268
197.
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2010
, “
A Model-Based Analysis of Orthogonal Cutting for Single-Crystal FCC Metals Including Crystallographic Anisotropy
,”
Mach. Sci. Technol.
,
14
(
1
), pp.
102
127
. 10.1080/10910340903586517
198.
Kota
,
N.
,
Rollett
,
A. D.
, and
Ozdoganlar
,
O. B.
,
2011
, “
A Rate-Sensitive Plasticity-Based Model for Machining of Face-Centered Cubic Single-Crystals—Part I: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031017
. 10.1115/1.4004134
199.
Kota
,
N.
,
Rollett
,
A. D.
, and
Ozdoganlar
,
O. B.
,
2011
, “
A Rate-Sensitive Plasticity-Based Model for Machining of fcc Single-Crystals—Part II: Model Calibration and Validation
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031018
. 10.1115/1.4004135
200.
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2012
, “
Orthogonal Machining of Single-Crystal and Coarse-Grained Aluminum
,”
J. Manuf. Process.
,
14
(
2
), pp.
126
134
. 10.1016/j.jmapro.2012.01.002
201.
Guillem Quintana
,
J. C.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
. 10.1016/j.ijmachtools.2011.01.001
202.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.
,
57
(
1
), pp.
371
374
. 10.1016/j.cirp.2008.03.048
203.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
(
1
), pp.
357
362
. 10.1016/S0007-8506(07)62342-7
204.
Onler
,
R.
,
Atre
,
S. V.
, and
Burak Ozdoganlar
,
O.
,
2019
, “
Forces in Green Micromachining of Ceramics: An Experimental Investigation on Micromachining of Aluminum Nitride
,”
ASME J. Micro Nano-Manuf.
,
7
(
2
), p.
024509
. 10.1115/1.4043345
205.
Jun
,
M. B. G.
,
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
Investigation of the Dynamics of Microend Milling—Part I: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
893
900
. 10.1115/1.2193546
206.
Jun
,
M. B. G.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
Investigation of the Dynamics of Microend Milling—Part II: Model Validation and Interpretation
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
901
912
. 10.1115/1.2335854
207.
Filiz
,
S.
,
Conley
,
C. M.
,
Wasserman
,
M. B.
, and
Ozdoganlar
,
O. B.
,
2007
, “
An Experimental Investigation of Micro-Machinability of Copper 101 Using Tungsten Carbide Micro-Endmills
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1088
1100
. 10.1016/j.ijmachtools.2006.09.024
208.
Bediz
,
B.
,
Arda Gozen
,
B.
,
Korkmaz
,
E.
, and
Burak Ozdoganlar
,
O.
,
2014
, “
Dynamics of Ultra-High-Speed (UHS) Spindles Used for Micromachining
,”
Int. J. Mach. Tools Manuf.
,
87
, pp.
27
38
. 10.1016/j.ijmachtools.2014.07.007
209.
Bediz
,
B.
,
Romero
,
L. A.
, and
Burak Ozdoganlar
,
O.
,
2015
, “
Three Dimensional Dynamics of Rotating Structures Under Mixed Boundary Conditions
,”
J. Sound Vib.
,
358
, pp.
176
191
. 10.1016/j.jsv.2015.08.015
210.
Jun
,
M. B.
,
Burak Ozdoganlar
,
O.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
,
Kirchheim
,
A.
, and
Schaffner
,
G.
,
2002
, “
Evaluation of a Spindle-Based Force Sensor for Monitoring and Fault Diagnosis of Machining Operations
,”
Int. J. Mach. Tools Manuf.
,
42
(
6
), pp.
741
751
. 10.1016/S0890-6955(01)00156-0
211.
ISO 230-7
,
2015
, “
Test Code for Machine Tools – Geometric Accuracy of Axes of Rotation
,”
International Organization for Standardization
,
Geneva, Switzerland
.
212.
Lu
,
X.
, and
Jamalian
,
A.
,
2011
, “
A New Method for Characterizing Axis of Rotation Radial Error Motion: Part 1. Two-Dimensional Radial Error Motion Theory
,”
Precis. Eng.
,
35
(
1
), pp.
73
94
. 10.1016/j.precisioneng.2010.08.005
213.
Lu
,
X.
,
Jamalian
,
A.
, and
Graetz
,
R.
,
2011
, “
A New Method for Characterizing Axis of Rotation Radial Error Motion: Part 2. Experimental Results
,”
Precis. Eng.
,
35
(
1
), pp.
95
107
. 10.1016/j.precisioneng.2010.08.006
214.
Gong
,
Y.
,
Wang
,
J.
,
Abba
,
G.
,
Antoine
,
J. F.
, and
Shi
,
J.
,
2008
, “
Tool Tip Trajectories Investigation and Its Influences in Micromilling Operation
,”
3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems
,
Hainan Island, China
,
Jan. 6–9
, pp.
440
445
.
215.
Smith
,
P. T.
,
Vallance
,
R. R.
, and
Marsh
,
E. R.
,
2005
, “
Correcting Capacitive Displacement Measurements in Metrology Applications With Cylindrical Artifacts
,”
Precis. Eng.
,
29
(
3
), pp.
324
335
. 10.1016/j.precisioneng.2004.11.010
216.
Grejda
,
R.
,
Marsh
,
E.
, and
Vallance
,
R.
,
2005
, “
Techniques for Calibrating Spindles With Nanometer Error Motion
,”
Precis. Eng.
,
29
(
1
), pp.
113
123
. 10.1016/j.precisioneng.2004.05.003
217.
Anandan
,
K. P.
, and
Ozdoganlar
,
O. B.
,
2013
, “
An LDV-Based Methodology for Measuring Axial and Radial Error Motions When Using Miniature Ultra-High-Speed (UHS) Micromachining Spindles
,”
Precis. Eng.
,
37
(
1
), pp.
172
186
. 10.1016/j.precisioneng.2012.08.001
218.
Anandan
,
K. P.
,
Tulsian
,
A. S.
,
Donmez
,
A.
, and
Ozdoganlar
,
O. B.
,
2012
, “
A Technique for Measuring Radial Error Motions of Ultra-High-Speed Miniature Spindles Used for Micromachining
,”
Precis. Eng.
,
36
(
1
), pp.
104
120
. 10.1016/j.precisioneng.2011.07.014
219.
Anandan
,
K. P.
, and
Ozdoganlar
,
O. B.
,
2016
, “
A Multi-Orientation Error Separation Technique for Spindle Metrology of Miniature Ultra-High-Speed Spindles
,”
Precis. Eng.
,
43
, pp.
119
131
. 10.1016/j.precisioneng.2015.07.002
220.
Anandan
,
K. P.
, and
Ozdoganlar
,
O. B.
,
2013
, “
Analysis of Error Motions of Ultra-High-Speed (UHS) Micromachining Spindles
,”
Int. J. Mach. Tools Manuf.
,
70
, pp.
1
14
. 10.1016/j.ijmachtools.2013.02.005
221.
Ozdoganlar
,
O. B.
,
Hansche
,
B. D.
, and
Carne
,
T. G.
,
2005
, “
Experimental Modal Analysis for Microelectromechanical Systems
,”
Exp. Mech.
,
45
(
6
), pp.
498
506
. 10.1007/BF02427903
222.
Albrecht
,
A.
,
Park
,
S. S.
,
Altintas
,
Y.
, and
Pritschow
,
G.
,
2005
, “
High Frequency Bandwidth Cutting Force Measurement in Milling Using Capacitance Displacement Sensors
,”
Int. J. Mach. Tools Manuf.
,
45
(
9
), pp.
993
1008
. 10.1016/j.ijmachtools.2004.11.028
223.
Park
,
S. S.
, and
Malekian
,
M.
,
2009
, “
Mechanistic Modeling and Accurate Measurement of Micro End Milling Forces
,”
CIRP Ann.
,
58
(
1
), pp.
49
52
. 10.1016/j.cirp.2009.03.060
224.
Gong
,
Y.
,
Ehmann
,
K. F.
, and
Lin
,
C.
,
2003
, “
Analysis of Dynamic Characteristics of Micro-Drills
,”
J. Mater. Process. Technol.
,
141
(
1
), pp.
16
28
. 10.1016/S0924-0136(02)00947-0
225.
Ertürk
,
A.
,
Özgüven
,
H. N.
, and
Budak
,
E.
,
2006
, “
Analytical Modeling of Spindle–Tool Dynamics on Machine Tools Using Timoshenko Beam Model and Receptance Coupling for the Prediction of Tool Point FRF
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
1901
1912
. 10.1016/j.ijmachtools.2006.01.032
226.
Budak
,
E.
,
Ertürk
,
A.
, and
Özgüven
,
H. N.
,
2006
, “
A Modeling Approach for Analysis and Improvement of Spindle-Holder-Tool Assembly Dynamics
,”
CIRP Ann.
,
55
(
1
), pp.
369
372
. 10.1016/S0007-8506(07)60437-5
227.
Yagci
,
B.
,
Filiz
,
S.
,
Romero
,
L. L.
, and
Ozdoganlar
,
O. B.
,
2009
, “
A Spectral-Tchebychev Technique for Solving Linear and Nonlinear Beam Equations
,”
J. Sound Vib.
,
321
(
1–2
), pp.
375
404
. 10.1016/j.jsv.2008.09.040
228.
Filiz
,
S.
,
Ozdoganlar
,
O. B.
, and
Romero
,
L. A.
,
2008
, “
An Analytical Model for Micro-Endmill Dynamics
,”
J. Vib. Control
,
14
(
8
), pp.
1125
1140
. 10.1177/1077546307080245
229.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
,
2008
, “
Microendmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part I: Model Development and Numerical Solution
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031119
. 10.1115/1.2917321
230.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
,
2008
, “
Microendmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part II: Model Validation and Application
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031120
. 10.1115/1.2936379
231.
Filiz
,
S.
, and
Burak Ozdoganlar
,
O.
,
2008
, “
Experimental Modal Analysis of Micro-Drills
,”
SME North American Manufacturing Research Conference (NAMRC) 36
,
Monterrey, Mexico
,
May 20–23
.
232.
Filiz
,
S.
, and
Burak Ozdoganlar
,
O.
,
2010
, “
A Model for Bending, Torsional, and Axial Vibrations of Micro and Macro-Drills Including Actual Drill Geometry—Part I: Model Development and Numerical Solution
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), pp.
1
8
.
233.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
,
2011
, “
A Three-Dimensional Model for the Dynamics of Micro-Endmills Including Bending, Torsional and Axial Vibrations
,”
Precis. Eng.
,
35
(
1
), pp.
24
37
. 10.1016/j.precisioneng.2010.05.003
234.
Filiz
,
S.
,
Bediz
,
B.
,
Romero
,
L. A.
, and
Ozdoganlar
,
O. B.
,
2012
, “
A Spectral-Tchebychev Solution for Three-Dimensional Vibrations of Parallelepipeds Under Mixed Boundary Conditions
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051012
. 10.1115/1.4006256
235.
Filiz
,
S.
,
Bediz
,
B.
,
Romero
,
L. A.
, and
Ozdoganlar
,
O. B.
,
2014
, “
Three Dimensional Dynamics of Pretwisted Beams: A Spectral-Tchebychev Solution
,”
J. Sound Vib.
,
333
(
10
), pp.
2823
2839
. 10.1016/j.jsv.2014.01.010
236.
Bediz
,
B.
, and
Ozdoganlar
,
O. B.
,
2019
, “
Rotational Dynamics of Micro-Scale Cutting Tools
,”
Precis. Eng.
,
60
, pp.
1
11
. 10.1016/j.precisioneng.2019.07.004
237.
Yoon
,
H. S.
, and
Ehmann
,
K. F.
,
2018
, “
Dynamics and Stability of Micro-Cutting Operations
,”
Int. J. Mech. Sci.
,
115–116
, pp.
81
92
. 10.1016/j.ijmecsci.2016.06.009
238.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
. 10.2514/3.4741
239.
Park
,
S. S.
,
Altintas
,
Y.
, and
Movahhedy
,
M.
,
2003
, “
Receptance Coupling for End Mills
,”
Int. J. Mach. Tools Manuf.
,
43
(
9
), pp.
889
896
. 10.1016/S0890-6955(03)00088-9
240.
Schmitz
,
T. L.
, and
Duncan
,
G. S.
,
2005
, “
Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
781
790
. 10.1115/1.2039102
241.
Filiz
,
S.
,
Cheng
,
C. H.
,
Powell
,
K. B.
,
Schmitz
,
T. L.
, and
Ozdoganlar
,
O. B.
,
2009
, “
An Improved Tool-Holder Model for RCSA Tool-Point Frequency Response Prediction
,”
Precis. Eng.
,
33
(
1
), pp.
26
36
. 10.1016/j.precisioneng.2008.03.003
242.
Kumar
,
U. V.
, and
Schmitz
,
T. L.
,
2012
, “
Spindle Dynamics Identification for Receptance Coupling Substructure Analysis
,”
Precis. Eng.
,
36
(
3
), pp.
435
443
. 10.1016/j.precisioneng.2012.01.007
243.
Schmitz
,
T. L.
, and
Donalson
,
R. R.
,
2000
, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann.
,
49
(
1
), pp.
303
308
. 10.1016/S0007-8506(07)62951-5
244.
Schmitz
,
T. L.
,
Davies
,
M. A.
, and
Kennedy
,
M. D.
,
2001
, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
700
707
. 10.1115/1.1392994
245.
Cheng
,
C.-H.
,
Schmitz
,
T. L.
, and
Scott Duncan
,
G.
,
2007
, “
Rotating Tool Point Frequency Response Prediction Using RCSA
,”
Mach. Sci. Technol.
,
11
(
3
), pp.
433
446
.
246.
Korkmaz
,
E.
,
Bediz
,
B.
,
Gozen
,
B. A.
, and
Ozdoganlar
,
O. B.
,
2014
, “
Dynamic Characterization of Multi-Axis Dynamometers
,”
Precis. Eng.
,
38
(
1
), pp.
148
161
. 10.1016/j.precisioneng.2013.08.006
247.
Korkmaz
,
E.
,
Gozen
,
B. A.
,
Bediz
,
B.
, and
Ozdoganlar
,
O. B.
,
2017
, “
Accurate Measurement of Micromachining Forces Through Dynamic Compensation of Dynamometers
,”
Precis. Eng.
,
49
, pp.
365
376
. 10.1016/j.precisioneng.2017.03.006
248.
Sikirica
,
S.
,
2016
,
High Metal Removal Rate Process for Machining Difficult Materials
,
U.S Department of Energy—Advanced Manufacturing Office
,
Washington, DC
.
249.
Kusiak
,
A.
,
2018
, “
Smart Manufacturing
,”
Int. J. Prod. Res.
,
56
(
1–2
), pp.
508
517
. 10.1080/00207543.2017.1351644
250.
Wang
,
B.
,
2018
, “
The Future of Manufacturing: A New Perspective
,”
Engineering
,
4
(
5
), pp.
722
728
. 10.1016/j.eng.2018.07.020
251.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
. 10.1016/j.pmatsci.2017.10.001
252.
Shih
,
A. J.
,
2008
, “
Biomedical Manufacturing: A New Frontier of Manufacturing Research
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021009
. 10.1115/1.2896116
253.
Belvin
,
W. K.
,
Doggett
,
B.R.
,
Watson
,
J.J.
,
Dorsey
,
J.T.
,
Warren
,
J.
,
Jones
,
T.C.
,
Komendera
,
E.E.
,
Mann
,
T.O.
, and
Bowman
,
L.
,
2016
, “
In-Space Structural Assembly: Applications and Technology
,”
3rd AIAA Spacecraft Structures Conference
,
San Diego, CA
,
Jan. 4–8
, pp.
1
11
.
254.
Sutherland
,
J. W.
,
2011
, “
In Memoriam: Richard E. DeVor
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
060101
10.1115/1.4005468
You do not currently have access to this content.