Although extrusion-based 3D printing processes have seen many successful applications at the macroscale, it has proven to be challenging for consistent, repeatable, and cost-effective printing at the microscale due to its dynamic complexities. To fully tap into the promise of microextrusion printing (µEP) of fabricating fine resolution features, it is critical to establish an understanding of the fundamentals of ink flow, interface energy, drying, and the process-property relationship of the printing process. To date, a comprehensive and coherent organization of this knowledge from relevant literature in different fields is still lacking. In this paper, we present a framework of the underlying principles of the microextrusion process, offering an overall roadmap to guide successful printing based on both results in the literature and our own experimental tests. The impacts of various process parameters on the resolution of printed features are identified. Experiments are carried out to validate the developed framework. Key challenges and future directions of microextrusion 3D printing are also highlighted.

References

1.
Hsu
,
T.
,
2002
, “
Miniaturization–A Paradigm Shift in Advanced Manufacturing and Education
,”
International Conference on Advanced Manufacturing Technologies and Education in the 21st Century
,
Chia-Yi, Taiwan, Republic of China
.
2.
Ikuta
,
K.
,
Hirowatari
,
K.
, and
Ogata
,
T
,
1994
, “
Three Dimensional Micro Integrated Fluid Systems (MIFS) Fabricated by Stereo Lithography
,”
Proceedings IEEE Workshop on Micro Electro Mechanical Systems, 1994, MEMS’94
,
Oiso, Japan
.
3.
Sun
,
K.
,
Wei
,
T.
, and
Ahn
,
B. Y.
,
2013
, “
3D Printing of Interdigitated Li-ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
.
4.
Cohrs
,
N. H.
,
Petrou
,
A.
, and
Loepfe
,
M.
,
2017
, “
A Soft Total Artificial Heart—First Concept Evaluation on a Hybrid Mock Circulation
,”
Artif. Organs
,
41
,
948
958
.
5.
Chou
,
H. P.
,
Spence
,
C.
, and
Scherer
,
A.
,
1999
, “
A Microfabricated Device for Sizing and Sorting DNA Molecules
,”
Proc. Natl Acad. Sci. U.S.A.
,
96
(
1
), pp.
11
13
.
6.
Dario
,
P.
,
Carrozza
,
M. C.
, and
Benvenuto
,
A.
,
2000
, “
Micro-Systems in Biomedical Applications
,”
J. Micromech. Microeng.
,
10
(
2
), pp.
235
244
.
7.
Kim
,
B.
,
Lee
,
J.
, and
Gao
,
G.
,
2017
, “
Direct 3D Cell-Printing of Human Skin With Functional Transwell System
,”
Biofabrication
,
9
(
2
),
025034
.
8.
Hansen
,
C. J.
,
Wu
,
W.
, and
Toohey
,
K. S.
,
2009
, “
Self-Healing Materials With Interpenetrating Microvascular Networks
,”
Adv. Mater.
,
21
(
41
), pp.
4143
4147
.
9.
Chabinyc
,
M. L.
,
Chiu
,
D. T.
, and
McDonald
,
J. C.
,
2001
, “
An Integrated Fluorescence Detection System in Poly (Dimethylsiloxane) for Microfluidic Applications
,”
Anal. Chem.
,
73
(
18
), pp.
4491
4498
.
10.
Weigl
,
B. H.
, and
Yager
,
P.
,
1999
, “
Microfluidic Diffusion-Based Separation and Detection
,”
Science
,
283
(
5400
), pp.
346
347
.
11.
Anderson
,
J. R.
,
Chiu
,
D. T.
, and
Jackman
,
R. J.
,
2000
, “
Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping
,”
Anal. Chem.
,
72
(
14
), pp.
3158
3164
.
12.
Ahn
,
B. Y.
,
Duoss
,
E. B.
, and
Motala
,
M. J.
,
2009
, “
Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes
,”
Science (New York, N.Y.)
,
323
(
5921
), pp.
1590
1593
.
13.
Kim
,
J. T.
,
Seol
,
S. K.
, and
Pyo
,
J.
,
2011
, “
Three-Dimensional Writing of Conducting Polymer Nanowire Arrays by Meniscus-Guided Polymerization
,”
Adv. Mater.
,
23
(
17
), pp.
1968
1970
.
14.
Sirringhaus
,
H.
,
Kawase
,
T.
, and
Friend
,
R. H.
,
2000
, “
High-Resolution Inkjet Printing of all-Polymer Transistor Circuits
,”
Science (New York, N.Y.)
,
290
(
5499
), pp.
2123
2126
.
15.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer-Verlag
,
New York
.
17.
Murphy
,
S.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.
18.
Barton
,
K.
,
Mishra
,
S.
, and
Shorter
,
K. A.
,
2010
, “
A Desktop Electrohydrodynamic Jet Printing System
,”
Mechatronics
,
20
(
5
), pp.
611
616
.
19.
Kadara
,
R. O.
,
Jenkinson
,
N.
, and
Li
,
B.
,
2008
, “
Manufacturing Electrochemical Platforms: Direct-Write Dispensing Versus Screen Printing
,”
Electrochem. Commun.
,
10
(
10
), pp.
1517
1519
.
20.
Wang
,
J.
, and
Shaw
,
L. L.
,
2005
, “
Rheological and Extrusion Behavior of Dental Porcelain Slurries for Rapid Prototyping Applications
,”
Mater. Sci. Eng. A
,
397
(
1
), pp.
314
321
.
21.
Lewis
,
J. A.
, and
Gratson
,
G. M.
,
2004
, “
Direct Writing in Three Dimensions
,”
Mater. Today
,
7
(
7
), pp.
32
39
.
22.
Therriault
,
D.
,
Shepherd
,
R. F.
, and
White
,
S. R.
,
2005
, “
Fugitive Inks for Direct-Write Assembly of Three-Dimensional Microvascular Networks
,”
Adv. Mater.
,
17
(
4
), pp.
395
399
.
23.
Khalil
,
S.
, and
Sun
,
W.
,
2007
, “
Biopolymer Deposition for Freeform Fabrication of Hydrogel Tissue Constructs
,”
Mater. Sci. Eng. C
,
27
(
3
), pp.
469
478
.
24.
Vozzi
,
G.
,
Flaim
,
C.
, and
Ahluwalia
,
A.
,
2003
, “
Fabrication of PLGA Scaffolds using Soft Lithography and Microsyringe Deposition
,”
Biomaterials
,
24
(
14
), pp.
2533
2540
.
25.
Vozzi
,
G.
,
Previti
,
A.
, and
De Rossi
,
D.
,
2002
, “
Microsyringe-Based Deposition of Two-Dimensional and Three-Dimensional Polymer Scaffolds With a Well-Defined Geometry for Application to Tissue Engineering
,”
Tissue Eng.
,
8
(
6
), pp.
1089
1098
.
26.
Schaffner
,
M.
,
Ruhs
,
P. A.
, and
Coulter
,
F.
,
2017
, “
3D Printing of Bacteria Into Functional Complex Materials
,”
Sci. Adv.
,
3
(
12
),
eaao6804
.
27.
Schuurman
,
W.
,
Levett
,
P.
, and
Pot
,
M.
,
2013
, “
Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs
,”
Macromol. Biosci.
,
13
(
5
), pp.
551
561
.
28.
Kang
,
H.
,
Lee
,
S.
, and
Ko
,
I.
,
2016
, “
A 3D Bioprinting System to Produce Human-Scale Tissue Constructs With Structural Integrity
,”
Nat. Biotechnol.
,
34
(
3
), pp.
312
312
.
29.
Jin
,
Y.
,
Plott
,
J.
, and
Shih
,
A.
,
2015
, “
Extrusion-Based Additive Manufacturing of the Moisture-Cured Silicone Elastomer
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, Texas
.
30.
Bhattacharjee
,
T.
,
Zehnder
,
S. M.
, and
Rowe
,
K. G.
,
2015
, “
Writing in the Granular Gel Medium
,”
Sci. Adv.
,
1
(
8
),
e1500655
.
31.
Hinton
,
T. J.
,
Hudson
,
A.
, and
Pusch
,
K.
,
2016
, “
3D Printing PDMS Elastomer in a Hydrophilic Support Bath Via Freeform Reversible Embedding
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1781
1786
.
32.
Dermanaki-Farahani
,
R.
,
Lebel
,
L. L.
, and
Therriault
,
D.
,
2014
, “
Manufacturing of Three-Dimensionally Microstructured Nanocomposites Through Microfluidic Infiltration
,”
J. Vis. Exp.
, (
85
).
33.
Malone
,
E.
,
Rasa
,
K.
, and
Cohen
,
D.
,
2004
, “
Freeform Fabrication of Zinc-Air Batteries and Electromechanical Assemblies
,”
Rapid Prototyping J.
,
10
(
1
), pp.
58
69
.
34.
Kuhn
,
M.
,
Napporn
,
T.
, and
Meunier
,
M.
,
2008
, “
Direct-Write Microfabrication of Single-Chamber Micro Solid Oxide Fuel Cells
,”
J. Micromech. Microeng.
,
18
(
1
), 015005.
35.
Becerril
,
H. A.
,
Roberts
,
M. E.
, and
Liu
,
Z.
,
2008
, “
High-Performance Organic Thin-Film Transistors Through Solution-Sheared Deposition of Small-Molecule Organic Semiconductors
,”
Adv. Mater.
,
20
(
13
), pp.
2588
2594
.
36.
Dimos
,
D.
,
King
,
B.
, and
Yang
,
P.
(
1999
). “
Direct-Write Fabrication of Integrated, Multilayer Passive Components
,”
International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces
,
Braselton, GA
,
Mar. 4–17
,
IEEE
,
New York
, pp.
186
190
.
37.
Ahn
,
B. Y.
,
Lorang
,
D. J.
, and
Duoss
,
E. B.
,
2010
, “
Direct-Write Assembly of Microperiodic Planar and Spanning ITO Microelectrodes
,”
Chem. Commun.
,
46
(
38
), pp.
7118
7120
.
38.
Massa
,
S.
,
Sakr
,
M. A.
, and
Seo
,
J.
,
2017
, “
Bioprinted 3D Vascularized Tissue Model for Drug Toxicity Analysis
,”
Biomicrofluidics
,
11
(
4
),
044109
.
39.
Therriault
,
D.
,
White
,
S. R.
, and
Lewis
,
J. A.
,
2003
, “
Chaotic Mixing in Three-Dimensional Microvascular Networks Fabricated by Direct-Write Assembly
,”
Nat. Mater.
,
2
(
4
), pp.
265
271
.
40.
Wu
,
W.
,
2010
,
Direct Ink Writing of Microvascular Networks
,
University of Illinois at Urbana-Champaign
,
IL
.
41.
Therriault
,
D.
,
2003
, “
Directed Assembly of Three-Dimensional Microvascular Networks
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
,
IL
.
42.
Risner
,
J.
,
2008
,
Investigation of Dielectric Elastomer Actuation for Printable Mechatronics
,
University of California
,
Berkeley
.
43.
Muth
,
J. T.
,
Vogt
,
D. M.
, and
Truby
,
R. L.
,
2014
, “
Embedded 3D Printing of Strain Sensors Within Highly Stretchable Elastomers
,”
Adv. Mater.
,
26
(
36
), pp.
6307
6312
.
44.
Lewis
,
J. A.
,
2006
, “
Direct Ink Writing of 3D Functional Materials
,”
Adv. Funct. Mater.
,
16
(
17
), pp.
2193
2204
.
45.
Datar
,
A.
,
2012
,
Micro-Extrusion Process Parameter Modeling
,
Rochester Institute of Technology
,
Rochester, NY
.
46.
Gleadall
,
A.
,
Ashcroft
,
I.
, and
Segal
,
J.
,
2018
, “
VOLCO: A Predictive Model for 3D Printed Microarchitecture
,”
Addit. Manuf.
,
21
, pp.
605
618
.
47.
Mason
,
M. S.
,
Huang
,
T.
, and
Landers
,
R. G.
,
2006
, “
Freeform Extrusion of High Solids Loading Ceramic Slurries, Part I: Extrusion Process Modeling
,”
17th Solid Freeform Fabrication Symposium, SFF 2006
,
Austin, TX
,
Aug. 14–16,
University of Texas at Austin (freeform)
, pp.
316
328
.
48.
Li
,
Q.
, and
Lewis
,
J. A.
,
2003
, “
Nanoparticle Inks for Directed Assembly of Three-Dimensional Periodic Structures
,”
Adv. Mater.
,
15
(
19
), pp.
1639
1643
.
49.
Smay
,
J. E.
,
Cesarano
,
J.
, and
Lewis
,
J. A.
,
2002
, “
Colloidal Inks for Directed Assembly of 3-D Periodic Structures
,”
Langmuir
,
18
(
14
), pp.
5429
5437
.
50.
Chang
,
R.
,
Nam
,
J.
, and
Sun
,
W.
,
2008
, “
Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival From Solid Freeform Fabrication–Based Direct Cell Writing
,”
Tissue Eng. Part A
,
14
(
1
), pp.
41
48
.
51.
Cao
,
Y.
,
Zhou
,
L.
, and
Wang
,
X.
,
2009
, “
MicroPen Direct-Write Deposition of Polyimide
,”
Microelectron. Eng.
,
86
(
10
), pp.
1989
1993
.
52.
Crockett
,
R. S.
, and
Calvert
,
P. D.
,
1996
, “
The Liquid-to-Solid Transition in Stereodeposition Techniques
,”
Solid Freeform Fabrication Symposium
,
Austin, Texas
.
53.
Gratson
,
G.
, and
Lewis
,
J.
,
2005
, “
Phase Behavior and Rheological Properties of Polyelectrolyte Inks for Direct-Write Assembly
,”
Langmuir
,
21
(
1
), pp.
457
464
.
54.
Li
,
B.
,
Clark
,
P. A.
, and
Church
,
K
,
2007
, “
Robust Direct-Write Dispensing Tool and Solutions for Micro/Meso-Scale Manufacturing and Packaging
,”
ASME 2007 International Manufacturing Science and Engineering Conference
,
Atlanta, Georgia, USA
.
55.
Piqué
,
A.
, and
Chrisey
,
D. B.
,
2001
,
Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources
,
Academic Press
,
New York
.
56.
2018
, “
Surface Tension Values of Some Common Test Liquids for Surface Energy Analysis
,” http://www.Surface-Tension.De/.
57.
Ahn
,
B. Y.
,
Walker
,
S. B.
, and
Slimmer
,
S. C.
,
2011
, “
Planar and Three-Dimensional Printing of Conductive Inks
,”
J. Vis. Exp.
, (
58
). pii:
3189
.
58.
Nordson EFD
,
2017
, “
Important Safety Information
.”
59.
Cesarano
,
J.
, III
,
Segalman
,
R.
, and
Calvert
,
P.
,
1998
, “
Robocasting Provides Moldless Fabrication From Slurry Deposition
,”
Ceram. Ind.
,
148
(
4
), pp.
94
94
.
60.
King
,
B. H.
,
Morissette
,
S.
, and
Denham
,
H
,
1998
, “
Influence of Rheology on Deposition Behavior of Ceramic Pastes in Direct Fabrication Systems
,”
Solid Freeform Fabrication Symposium
,
Austin, Texas
.
61.
Morissette
,
S. L.
,
Lewis
,
J. A.
, and
Cesarano
,
J.
,
2000
, “
Solid Freeform Fabrication of Aqueous Alumina–Poly (Vinyl Alcohol) Gelcasting Suspensions
,”
J. Am. Ceram. Soc.
,
83
(
10
), pp.
2409
2416
.
62.
Vickroy
,
B.
,
Lorenz
,
K.
, and
Kelly
,
W.
,
2007
, “
Modeling Shear Damage to Suspended CHO Cells During Cross-Flow Filtration
,”
Biotechnol. Prog.
,
23
(
1
), pp.
194
199
.
63.
Li
,
M.
,
Tian
,
X.
, and
Schreyer
,
D. J.
,
2011
, “
Effect of Needle Geometry on Flow Rate and Cell Damage in the Dispensing-Based Biofabrication Process
,”
Biotechnol. Prog.
,
27
(
6
), pp.
1777
1784
.
64.
Lewis
,
J. A.
,
2000
, “
Colloidal Processing of Ceramics
,”
J. Am. Ceram. Soc.
,
83
(
10
), pp.
2341
2359
.
65.
Smay
,
J. E.
,
Gratson
,
G. M.
, and
Shepherd
,
R. F.
,
2002
, “
Directed Colloidal Assembly of 3D Periodic Structures
,”
Adv. Mater.
,
14
(
18
), pp.
1279
1283
.
66.
Malda
,
J.
,
Visser
,
J.
, and
Melchels
,
F. P.
,
2013
, “
25th Anniversary Article: Engineering Hydrogels for Biofabrication
,”
Adv. Mater.
,
25
(
36
), pp.
5011
5028
.
67.
Martanto
,
W.
,
Baisch
,
S. M.
, and
Costner
,
E. A.
,
2005
, “
Fluid Dynamics in Conically Tapered Microneedles
,”
AIChE J.
,
51
(
6
), pp.
1599
1607
.
68.
Li
,
M.
,
2010
, “
Modeling of the Dispensing-Based Tissue Scaffold Fabrication Processes
,”
Ph. D. thesis
,
University of Saskatchewan
,
Canada
.
69.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
.
70.
Stone
,
H. A.
, and
Kim
,
S.
,
2001
, “
Microfluidics: Basic Issues, Applications, and Challenges
,”
AIChE J.
,
47
(
6
), pp.
1250
1254
.
71.
Weislogel
,
M. M.
,
1996
,
Steady Capillary Driven Flow
, Feb. 1,
NASA Lewis Research Center
,
OH
.
72.
Fanchi
,
J. R.
,
2000
,
Integrated Flow Modeling
,
Elsevier
,
Amsterdam
.
73.
Chang
,
B.
,
Nave
,
G.
, and
Jung
,
S.
,
2012
, “
Drop Formation From a Wettable Nozzle
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
5
), pp.
2045
2051
.
74.
Chen
,
X.
,
Li
,
M.
, and
Ke
,
H.
,
2008
, “
Modeling of the Flow Rate in the Dispensing-Based Process for Fabricating Tissue Scaffolds
,”
J. Manuf. Sci. Eng.-Trans. ASME
,
130
(
2
),
021003
.
75.
Wang
,
Y.
,
2016
, “
Capillarity and Wetting of Non-Newtonian Droplets
,” http://urn.Kb.se/resolve?urn=urn:Nbn:Se:Kth:Diva-184146.
76.
Osti
,
G.
,
Wolf
,
F.
, and
Philippi
,
P
.,
2009
, “
Spreading of Liquid Drops on Acrylic Surfaces
,”
Proceedings of the 20th International Congress of Mechanical Engineering, International Congress of Mechanical Engineering
,
Gramado, RS, Brazil
.
77.
Duez
,
C.
,
Ybert
,
C.
, and
Clanet
,
C.
, (
2009
). “
Beating the Teapot Effect
,”
Phys. Rev. Lett.
104
,
084503
.
78.
Kim
,
J. H.
,
Chang
,
W. S.
, and
Kim
,
D.
,
2015
, “
3D Printing of Reduced Graphene Oxide Nanowires
,”
Adv. Mater.
,
27
(
1
), pp.
157
161
.
79.
Birdi
,
K.
,
Vu
,
D.
, and
Winter
,
A.
,
1989
, “
A Study of the Evaporation Rates of Small Water Drops Placed on a Solid-Surface
,”
J. Phys. Chem.
,
93
(
9
), pp.
3702
3703
.
80.
Hu
,
H.
, and
Larson
,
R. G.
,
2002
, “
Evaporation of a Sessile Droplet on a Substrate
,”
J. Phys. Chem. B
,
106
(
6
), pp.
1334
1344
.
81.
Jin
,
Y.
,
Compaan
,
A.
, and
Bhattacharjee
,
T.
,
2016
, “
Granular Gel Support-Enabled Extrusion of Three-Dimensional Alginate and Cellular Structures
,”
Biofabrication
,
8
(
2
),
025016
.
82.
Church
,
K. H.
,
Chen
,
X.
, and
Goldfarb
,
J. M.
,
2014
, “
Advanced Printing for Microelectronic Packaging
,”
IPC APEX Expo
,
Bannockburn, IL, USA
.
83.
Stanley
,
M.
,
1995
,
Modeling Axisymmetric Flows Dynamics of Films, Jets, and Drops
,
Academic Press
,
San Diego
.
84.
Liang
,
R.
, and
Mackley
,
M.
,
1994
, “
Rheological Characterization of the Time and Strain Dependence for Polyisobutylene Solutions
,”
J. Nonnewton. Fluid Mech.
,
52
(
3
), pp.
387
405
.
85.
Jin
,
Y.
,
Zhao
,
Z.
,
Danyang
, and
Huang
,
Y.
,
2018
, “
Study of Extrudability and Standoff Distance Effect during Nanoclay-Enabled Direct Printing
,”
Bio-Design Manuf.
,
1
(
2
), pp.
123
134
.
86.
Bos
,
F.
,
Wolfs
,
R.
, and
Ahmed
,
Z.
,
2016
, “
Additive Manufacturing of Concrete in Construction: Potentials and Challenges of 3D Concrete Printing
,”
Virtual Phys. Prototyping
,
11
(
3
), pp.
209
225
.
87.
Kirby
,
B. J.
,
2010
,
Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
,
Cambridge University Press
,
Cambridge
.
88.
He
,
Y.
,
Yang
,
F.
, and
Zhao
,
H.
,
2016
, “
Research on the Printability of Hydrogels in 3D Bioprinting
,”
Sci. Rep.
,
6
,
29977
.
89.
Landau
,
L.
, and
Levich
,
B.
,
1942
, “
Dragging of a Liquid by a Moving Plate
,”
Acta Physicochim. U.R.S.S.
,
17
(
42
), pp.
42
54
.
90.
Le Berre
,
M.
,
Chen
,
Y.
, and
Baigl
,
D.
,
2009
, “
From Convective Assembly to Landau−Levich Deposition of Multilayered Phospholipid Films of Controlled Thickness
,”
Langmuir
,
25
(
5
), pp.
2554
2557
.
91.
Janneck
,
R.
,
Vercesi
,
F.
, and
Heremans
,
P.
,
2016
, “
Predictive Model for the Meniscus-Guided Coating of High-Quality Organic Single-Crystalline Thin Films
,”
Adv. Mater.
,
28
(
36
), pp.
8007
8013
.
92.
Kim
,
J.
,
Lee
,
S.
, and
Wajahat
,
M.
,
2016
, “
Three-Dimensional Printing of Highly Conductive Carbon Nanotube Microarchitectures with Fluid Ink
,”
ACS Nano
,
10
(
9
), pp.
8879
8887
.
93.
Crockett
,
R. S.
,
1997
, “
The Liquid-to-Solid Transition in Stereodeposition Techniques
.”
94.
McKinley
,
G.H.
,
2005
,
Visco-Elasto-Capillary Thinning and Break-Up of Complex Fluids
,
Massachusetts Institute of Technology, MA
.
95.
Tuladhar
,
T.
, and
Mackley
,
M.
,
2008
, “
Filament Stretching Rheometry and Break-Up Behaviour of Low Viscosity Polymer Solutions and Inkjet Fluids
,”
J. Nonnewton. Fluid Mech.
,
148
(
1–3
), pp.
97
108
.
96.
Kinloch
,
A.
,
2012
,
Adhesion and Adhesives: Science and Technology
,
Springer Science & Business Media
,
Berlin, Germany
.
97.
Bonn
,
D.
,
Eggers
,
J.
, and
Indekeu
,
J.
,
2009
, “
Wetting and Spreading
,”
Rev. Mod. Phys.
,
81
(
2
), pp.
739–805
.
98.
Liang
,
T.
,
Sun
,
W.
, and
Wang
,
L.
,
1996
, “
Effect of Surface Energies on Screen Printing Resolution
,”
IEEE Trans. Compon. Packag. Manuf. Technol. Part B
,
19
(
2
), pp.
423
426
.
99.
Stauber
,
J.
,
Wilson
,
S.
, and
Duffy
,
B.
,
2014
, “
On the Lifetimes of Evaporating Droplets
,”
J. Fluid Mech.
744
, pp.
R2-1
R2-12
.
100.
King
,
B.
,
Dimos
,
D.
, and
Yang
,
P.
,
1999
, “
Direct-Write Fabrication of Integrated, Multilayer Ceramic Components
,”
J. Electroceram.
,
3
(
2
), pp.
173
178
.
101.
Gross
,
G. W.
,
Rhoades
,
B. K.
, and
Azzazy
,
H. M. E.
,
1995
, “
The Use of Neuronal Networks on Multielectrode Arrays as Biosensors
,”
Biosens. Bioelectron.
,
10
(
6
), pp.
553
567
.
102.
Mrksich
,
M.
,
Dike
,
L. E.
, and
Tien
,
J.
,
1997
, “
Using Microcontact Printing to Pattern the Attachment of Mammalian Cells to Self-Assembled Monolayers of Alkanethiolates on Transparent Films of Gold and Silver
,”
Exp. Cell Res.
,
235
(
2
), pp.
305
313
.
103.
Palchesko
,
R. N.
,
Zhang
,
L.
, and
Sun
,
Y.
,
2012
, “
Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve
,”
PLoS One
,
7
(
12
),
e51499
.
104.
Muth
,
J. T.
,
Vogt
,
D. M.
, and
Truby
,
R. L.
,
2014
, “
3D Printing: Embedded 3D Printing of Strain Sensors Within Highly Stretchable Elastomers (Adv. Mater. 36/2014)
,”
Adv. Mater.
,
26
(
36
), pp.
6202
6202
.
105.
Hinton
,
T. J.
,
Jallerat
,
Q.
, and
Palchesko
,
R. N.
,
2015
, “
Three-Dimensional Printing of Complex Biological Structures by Freeform Reversible Embedding of Suspended Hydrogels
,”
Sci. Adv.
,
1
(
9
),
e1500758
.
106.
Structur3D Printing
,
2017
, https://www.structur3d.io/#discov3ry.
107.
Comina
,
G.
,
Suska
,
A.
, and
Filippini
,
D.
,
2014
, “
PDMS Lab-on-a-Chip Fabrication Using 3D Printed Templates
,”
Lab Chip
,
14
(
2
), pp.
424
430
.
108.
Schneider
,
F.
,
Draheirn
,
J.
, and
Kamberger
,
R.
,
2009
, “
Process and Material Properties of Polydimethylsiloxane (PDMS) for Optical MEMS
,”
Sens. Actuators A Phys.
,
151
(
2
), pp.
95
99
.
109.
Robinson
,
A.
,
Minev
,
I.
, and
Graz
,
I.
,
2011
, “
Microstructured Silicone Substrate for Printable and Stretchable Metallic Films
,”
Langmuir
,
27
(
8
), pp.
4279
4284
.
You do not currently have access to this content.