Additive manufacturing (AM) processes are used to fabricate complex geometries using a layer-by-layer material deposition technique. These processes are recognized for creating complex shapes which are difficult to manufacture otherwise and enable designers to be more creative with their designs. However, as AM is still in its developing stages, relevant literature with respect to design guidelines for AM is not readily available. This paper proposes a novel design methodology which can assist designers in creating parts that are friendly to additive manufacturing. The research includes formulation of design guidelines by studying the relationship between input part geometry and AM process parameters. Two cases are considered for application of the developed design guidelines. The first case presents a feature graph-based design improvement method in which a producibility index (PI) concept is introduced to compare AM friendly designs. This method is useful for performing manufacturing validation of pre-existing designs and modifying it for better manufacturability through AM processes. The second approach presents a topology optimization-based design methodology which can help designers in creating entirely new lightweight designs which can be manufactured using AM processes with ease. Application of both these methods is presented in the form of case studies depicting design evolution for increasing manufacturability and associated producibility index of the part.

References

1.
Rosen
,
I. G.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
2.
Ponche
,
R.
,
Hascoet
,
J. Y.
,
Kerbrat
,
O.
, and
Mognol
,
P.
,
2012
, “
A New Global Approach to Design for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
7
(
2
), pp.
93
105
.
3.
Chiu
,
M.-C.
, and
Okudan
,
G.
,
2010
, “
Evolution of Design for X Tools Applicable to Design Stages: A Literature Review
,”
ASME
Paper No. DETC2010-29091.
4.
Hague
,
R.
,
Mansour
,
S.
, and
Saleh
,
N.
,
2004
, “
Material and Design Considerations for Rapid Manufacturing
,”
Int. J. Prod. Res.
,
42
(
22
), pp.
4691
4708
.
5.
Kulkarni
,
P.
,
Marsan
,
A.
, and
Dutta
,
D.
,
2000
, “
A Review of Process Planning Techniques in Layered Manufacturing
,”
Rapid Prototyping J.
,
6
(
1
), pp.
18
35
.
6.
Ranjan
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2015
, “
Design for Manufacturability in Additive Manufacturing Using a Graph Based Approach
,”
ASME
Paper No. MSEC2015-9448.
7.
Liu
,
K.
, and
Tovar
,
A.
,
2014
, “
An Efficient 3D Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
50
(
6
), pp.
1175
1196
.
8.
Choi
,
S. H.
, and
Samavedam
,
S.
,
2002
, “
Modeling and Optimization of Rapid Prototyping
,”
Comput. Ind.
,
47
(
1
), pp.
39
53
.
9.
Arni
,
R.
, and
Gupta
,
S. K.
,
2001
, “
Manufacturability Analysis of Flatness Tolerances in Solid Freeform Fabrication
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
148
56
.
10.
Paul
,
R.
, and
Anand
,
S.
,
2011
, “
Optimal Part Orientation in Rapid Manufacturing Process for Achieving Geometric Tolerances
,”
J. Manuf. Syst.
,
30
(
4
), pp.
214
222
.
11.
Clijsters
,
S.
,
Craeghs
,
T.
,
Moesen
,
M.
, and
Kruth
,
J.-P.
,
2012
, “
Optimization of Thin Wall Structures in SLM
,” Fraunhofer Additive Manufacturing Alliance,
Direct Digital Manufacturing Conference
, Berlin, March 14–15.
12.
Penga
,
L.
,
Shengqinb
,
J.
,
Xiaoyanb
,
Z.
,
Qianwub
,
H.
, and
Weihaoc
,
Z.
,
2007
, “
Direct Laser Fabrication of Thin-Walled Metal Parts Under Open-Loop Control
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
996
1002
.
13.
Shwe
,
P. S.
,
2012
, “
Quantitative Analysis on SLS Part Curling Using EOS P700 Machine
,”
J. Mater. Process. Technol.
,
212
(
12
), pp.
2433
2442
.
14.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
),
p
.
031009
.
15.
Allen
,
S.
, and
Dutta
,
D.
,
1995
, “
Determination and Evaluation of Support Structures in Layered Manufacturing
,”
J. Des. Manuf.
,
5
(
3
), pp.
153
162
.
16.
Cloots
,
M.
,
Spierings
,
A.
, and
Wegener
,
K.
,
2013
, “
Assessing New Support Minimizing Stratergies for the Additive Manufacturing Technology SLM
,”
Solid Freeform Fabrication Symposium
, Austin, Texas, pp.
631
643
.
17.
Paul
,
R.
, and
Anand
,
S.
,
2014
, “
Optimization of Layered Manufacturing Process for Reducing Form Errors With Minimal Support Structures
,”
J. Manuf. Syst.
,
36
, pp.
231
243
.
18.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
A New Approach to the Design and Optimisation of Support Structures in Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9
), pp.
1247
1254
.
19.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
, pp.
632
637
.
20.
Ponche
,
R.
,
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoet
,
J.-Y.
,
2014
, “
A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process
,”
Rob. Comput.-Integr. Manuf.
,
30
(
4
), pp.
389
398
.
21.
Klahn
,
C.
,
Leutenecker
,
B.
, and
Meboldt
,
M.
,
2014
, “
Design for Additive Manufacturing-Supporting the Substitution of Components in Series Products
,”
Procedia CIRP
,
21
, pp.
138
143
.
22.
Seepersad
,
C. C.
,
Govett
,
T.
,
Kim
,
K.
,
Lundin
,
M.
, and
Pinero
,
D.
,
2012
, “
A Designer's Guide for Dimensioning and Tolerancing SLS Parts
,”
23rd Annual International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
921
931
.
23.
Adam
,
G. A. O.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
24.
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoet
,
J.-Y.
,
2011
, “
A New DFM Approach to Combine Machining and Additive Manufacturing
,”
Comput. Ind.
,
62
(
7
), pp.
684
692
.
25.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Appl.
,
4
(
5
), pp.
585
594
.
26.
Joshi
,
S.
, and
Chang
,
T. C.
,
1998
, “
Graph Based Heuristics for Recognition of Machined Features From 3D Solid Model
,”
Comput.-Aided Des.
,
20
(
2
), pp.
58
66
.
27.
Lockett
,
H. L.
, and
Guenov
,
M. D.
,
2005
, “
Graph-Based Feature Recognition for Injection Moulding Based on a Mid-Surface Approach
,”
Comput.-Aided Des.
,
37
(
2
), pp.
251
262
.
28.
Gershenson
,
J.
, and
Prasad
,
G.
,
1997
, “
Modularity in Product Design for Manufacturability
,”
Int. J. Agile Manuf.
,
1
(
1
), pp.
99
110
.
29.
Changchien
,
S.
, and
Lin
,
L.
,
1996
, “
A Knowledge-Based Design Critique System for Manufacture and Assembly of Rotational Machined Parts in Concurrent Engineering
,”
Comput. Ind.
,
32
(
2
), pp.
117
140
.
30.
Huang
,
S.
,
Zhang
,
H.
, and
Oldham
,
W.
,
1997
, “
Tolerance Analysis for Setup Planning: A Graph Theoretical Approach
,”
Int. J. Prod. Res.
,
35
(
4
), pp.
1107
1124
.
31.
Brunetti
,
G.
, and
Golob
,
B.
,
2000
, “
A Feature-Based Approach Towards an Integrated Product Model Including Conceptual Design Information
,”
Comput.-Aided Des.
,
32
(
14
), pp.
877
887
.
32.
Liu
,
X.-J.
,
2012
, “
Modeling of Additive Manufacturing Process Relevant Feature in Layer Based Manufacturing Process Planning
,”
J. Shanghai Jiaotong Univ. (Sci.)
,
17
(
2
), pp.
241
244
.
33.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
34.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Method and Applications
,
Springer-Verlag
,
Berlin/Heidelberg
.
35.
Zhou
,
M.
,
Fleury
,
R.
,
Shyy
,
Y.
,
Thomas
,
H.
, and
Brennan
,
J.
,
2002
, “
Progress in Topology Optimization With Manufacturing Constraints
,” 9th
AIAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA, Sept. 4–6, Paper No. AIAA 2002-5614.
36.
Guest
,
J.
,
Prevost
,
J.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”.
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
.
37.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization For Additive Manufacturing
,”
24th Solid Freeform Fabrication Symposium
, pp.
6
8
.
38.
Gaynor
,
T. A.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Topology Optimization for Additive Manufacturing: Considering Maximum Overhang Constraint
,” 15th
AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference
, Atlanta, GA, Jne 16–20, Paper No. AIAA 2014-2036.
39.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2016
, “
Support Structure Constrained Topology Optimization for Additive Manufacturing
,”
Comput. Aided Des.
,
81
, pp.
1
13
.
40.
Langelaar
,
M.
,
2016
, “
Topology Optimization of 3D Self-Supporting Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
(
Part A
), pp.
60
70
.
41.
Wang
,
M.
, and
Qian
,
X.
,
2015
, “
Efficient Filtering in Topology Optimization Via B-Splines
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031402
.
42.
Mercelis
,
P.
, and
Kruth
,
J.-P.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
12
(
5
), pp.
254
265
.
43.
Jacobson
,
D. M.
, and
Bennett
,
G.
,
2006
, “
Practical Issues in the Application of Direct Metal Laser Sintering
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 14–16, pp.
728
739
.
44.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
,
Everson
,
R.
, and
Young
,
P.
,
2013
, “
Advanced Lattice Support Structures for Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1019
1026
.
45.
Krol
,
T. A.
,
Zaehb
,
M. F.
, and
Seidela
,
C.
,
2012
, “
Optimization of Supports in Metal-Based Additive Manufacturing by Means of Finite Element Models
,”
Solid Freeform Fabrication Symposium
, Austin, TX, pp.
707
718
.
46.
Topçu
,
O.
,
Taşcıoğlu
,
Y.
, and
Ünver
,
H. Ö.
,
2011
, “
A Method for Slicing CAD Models in Binary STL Format
,”
6th International Advanced Technologies Symposium
, Elazığ, Turkey, May, 16–18, pp.
141
145
.
47.
Zhou
,
M.
, and
Rozvany
,
G.
,
1991
, “
The Algorithm, C. O. C.,—Part II: Topological,Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
You do not currently have access to this content.