There are many scientific and engineering applications of transparent glass including optics, communications, electronics, and hermetic seals. However, there has been minimal research toward the additive manufacturing (AM) of transparent glass parts. This paper describes and demonstrates a filament-fed technique for AM of transparent glass. A transparent glass filament is melted by a CO2 laser and solidifies as the workpiece is translated relative to the stationary laser beam. To prevent thermal shock, the workpiece rests on a heated build platform. In order to obtain optically transparent parts, several challenges must be overcome, notably producing index homogeneity and avoiding bubble formation. The effects of key process parameters on the morphology and transparency of the printed glass are explored experimentally. These results are compared to a low-order model relating the process parameters to the temperature of the molten region, which is critical to the quality of the deposited glass. At lower temperatures, the glass is not fully melted, resulting in index variations in the final part, while at higher temperatures, phase separation introduces bubbles and other defects into the part. The correct process avoids these issues and deposits optically transparent glass.

References

1.
Pereira
,
T.
,
Rusinkiewicz
,
S.
, and
Matusik
,
W.
,
2014
, “
Computational Light Routing: 3D Printed Optical Fibers for Sensing and Display
,”
ACM Trans. Graphics
,
33
(
3
), p.
24
.
2.
Willis
,
K.
,
Brockmeyer
,
E.
,
Hudson
,
S.
, and
Poupyrev
,
I.
,
2012
, “
Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices
,” 25th Annual
ACM
Symposium on User Interface Software and Technology
, Cambridge, MA, Oct. 7–10, pp.
589
598
.
3.
Brockmeyer
,
E.
,
Poupyrev
,
I.
, and
Hudson
,
S.
,
2013
, “
PAPILLON: Designing Curved Display Surfaces With Printed Optics
,” 26th Annual
ACM
Symposium on User Interface Software and Technology
, St. Andrews, Scotland, UK, Oct. 8–11, pp.
457
462
.
4.
Urness
,
A. C.
,
Moore
,
E. D.
,
Kamysiak
,
K. K.
,
Cole
,
M. C.
, and
McLeod
,
R. R.
,
2013
, “
Liquid Deposition Photolithography for Submicrometer Resolution Three-Dimensional Index Structuring With Large Throughput
,”
Light Sci. Appl.
,
2
(
3
), p. e56.1–4.
5.
Niino
,
T.
, and
Yamada
,
H.
,
2009
, “
Fabrication of Transparent Parts by Laser Sintering Process: Transparentization of Laser Sintered Plastic Parts by Infiltrating Thermosetting Epoxy With Tuned Refractive Index
,”
J. Jpn. Soc. Precis. Eng.
,
75
(
12
), pp.
1454
1458
.
6.
Marder
,
S. R.
,
Brédas
,
J.-L.
, and
Perry
,
J. W.
,
2007
, “
Materials for Multiphoton 3D Microfabrication
,”
MRS Bull.
,
32
(
7
), pp.
561
565
.
7.
Blessing
,
K.
,
2014
, “
Print Head, Upgrade Kit for a Conventional Inkjet Printer, Inkjet Printer and Method for Printing Optical Structures
,”
U.S. Patent No. 8,840,235
.
8.
Weber
,
M. J.
,
2002
,
Handbook of Optical Materials
,
CRC Press
,
Boca Raton, FL
.
9.
Khmyrov
,
R.
,
Grigoriev
,
S.
,
Okunkova
,
A.
, and
Gusarov
,
A.
,
2014
, “
On the Possibility of Selective Laser Melting of Quartz Glass
,”
Phys. Procedia
,
56
, pp.
345
356
.
10.
Klocke
,
F.
,
McClung
,
A.
, and
Ader
,
C.
,
2004
, “
Direct Laser Sintering of Borosilicate Glass
,”
Solid Freeform Fabrication Symposium Proceedings
, Austin, TX, Aug. 3–5, pp.
214
219
.
11.
Fateri
,
M.
, and
Gebhardt
,
A.
,
2015
, “
Selective Laser Melting of Soda ‐Lime Glass Powder
,”
Int. J. Appl. Ceram. Technol.
,
12
(
1
), pp.
53
61
.
12.
Luo
,
J.
,
Pan
,
H.
, and
Kinzel
,
E. C.
,
2014
, “
Additive Manufacturing of Glass
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061024
.
13.
Marchelli
,
G.
,
Prabhakar
,
R.
,
Storti
,
D.
, and
Ganter
,
M.
,
2011
, “
The Guide to Glass 3D Printing: Developments, Methods, Diagnostics and Results
,”
Rapid Prototyping J.
,
17
(
3
), pp.
187
194
.
14.
Klein
,
S.
,
Simske
,
S.
,
Adams
,
G.
,
Parraman
,
C.
,
Walters
,
P.
,
Huson
,
D.
, and
Hoskins
,
S.
,
2012
, “
3D Printing of Transparent Glass
,”
NIP and Digital Fabrication Conference
, Society for Imaging Science and Technology, Quebec City, QC, Canada, Sept. 9–13, pp.
336
337
.
15.
Fu
,
Q.
,
Saiz
,
E.
, and
Tomsia
,
A. P.
,
2011
, “
Bioinspired Strong and Highly Porous Glass Scaffolds
,”
Adv. Funct. Mater.
,
21
(
6
), pp.
1058
1063
.
16.
Klein
,
J.
,
Stern
,
M.
,
Franchin
,
G.
,
Kayser
,
M.
,
Inamura
,
C.
,
Dave
,
S.
,
Weaver
,
J. C.
,
Houk
,
P.
,
Colombo
,
P.
,
Yang
,
M.
, and
Oxman
,
N.
,
2015
, “
Additive Manufacturing of Optically Transparent Glass
,”
3D Print. Addit. Manuf.
,
2
(
3
), pp.
92
105
.
17.
Pilon
,
L.
, and
Viskanta
,
R.
,
2003
, “
Radiation Characteristics of Glass Containing Gas Bubbles
,”
J. Am. Ceram. Soc.
,
86
(
8
), pp.
1313
1320
.
18.
Baillis
,
D.
,
Pilon
,
L.
,
Randrianalisoa
,
H.
,
Gomez
,
R.
, and
Viskanta
,
R.
,
2004
, “
Measurements of Radiation Characteristics of Fused Quartz Containing Bubbles
,”
J. Opt. Soc. Am. A
,
21
(
1
), pp.
149
159
.
19.
Shelby
,
J. E.
,
2005
,
Introduction to Glass Science and Technology
,
Royal Society of Chemistry
,
London
.
20.
Beerkens
,
R.
,
1995
, “
The Role of Gases in Glass Melting Processes
,”
Glass Sci. Technol.
,
68
(
12
), pp.
369
380
.
21.
Weinberg
,
M. C.
,
Onorato
,
P. I.
, and
Uhlmann
,
D. R.
,
1980
, “
Behavior of Bubbles in Glassmelts—I: Dissolution of a Stationary Bubble Containing a Single Gas
,”
J. Am. Ceram. Soc.
,
63
(
3–4
), pp.
175
180
.
22.
Balkanli
,
B.
, and
Ungan
,
A.
,
1996
, “
Numerical Simulation of Bubble Behaviour in Glass Melting Tanks—Part II: Dissolved Gas Concentration
,”
Glass Technol.
,
37
(
3
), pp.
101
105
.
23.
Pilon
,
L.
,
Fedorov
,
A. G.
,
Ramkrishna
,
D.
, and
Viskanta
,
R.
,
2004
, “
Bubble Transport in Three-Dimensional Laminar Gravity-Driven Flow—Mathematical Formulation
,”
J. Non-Crystalline Solids
,
336
(
2
), pp.
71
83
.
24.
Mok
,
S. H.
,
Bi
,
G.
,
Folkes
,
J.
,
Pashby
,
I.
, and
Segal
,
J.
,
2008
, “
Deposition of Ti–6Al–4V Using a High Power Diode Laser and Wire—Part II: Investigation on the Mechanical Properties
,”
Surf. Coat. Technol.
,
202
(
19
), pp.
4613
4619
.
25.
Martina
,
F.
,
Mehnen
,
J.
,
Williams
,
S. W.
,
Colegrove
,
P.
, and
Wang
,
F.
,
2012
, “
Investigation of the Benefits of Plasma Deposition for the Additive Layer Manufacture of Ti–6Al–4V
,”
J. Mater. Process. Technol.
,
212
(
6
), pp.
1377
1386
.
26.
Heralić
,
A.
,
Christiansson
,
A.-K.
, and
Lennartson
,
B.
,
2012
, “
Height Control of Laser Metal-Wire Deposition Based on Iterative Learning Control and 3D Scanning
,”
Opt. Lasers Eng.
,
50
(
9
), pp.
1230
1241
.
27.
Syed
,
W. U. H.
, and
Li
,
L.
,
2005
, “
Effects of Wire Feeding Direction and Location in Multiple Layer Diode Laser Direct Metal Deposition
,”
Appl. Surf. Sci.
,
248
(
1–4
), pp.
518
524
.
28.
Mok
,
S. H.
,
Bi
,
G.
,
Folkes
,
J.
, and
Pashby
,
I.
,
2008
, “
Deposition of Ti–6Al–4V Using a High Power Diode Laser and Wire—Part I: Investigation on the Process Characteristics
,”
Surf. Coat. Technol.
,
202
(
16
), pp.
3933
3939
.
29.
Heralić
,
A.
,
Christiansson
,
A.-K.
,
Ottosson
,
M.
, and
Lennartson
,
B.
,
2010
, “
Increased Stability in Laser Metal Wire Deposition Through Feedback From Optical Measurements
,”
Opt. Lasers Eng.
,
48
(
4
), pp.
478
485
.
30.
Xiong
,
J.
, and
Zhang
,
G.
,
2014
, “
Adaptive Control of Deposited Height in GMAW-Based Layer Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
4
), pp.
962
968
.
31.
Katou
,
M.
,
Oh
,
J.
,
Miyamoto
,
Y.
,
Matsuura
,
K.
, and
Kudoh
,
M.
,
2007
, “
Freeform Fabrication of Titanium Metal and Intermetallic Alloys by Three-Dimensional Micro Welding
,”
Mater. Des.
,
28
(
7
), pp.
2093
2098
.
32.
Nowotny
,
S.
,
Scharek
,
S.
,
Beyer
,
E.
, and
Richter
,
K.-H.
,
2007
, “
Laser Beam Build-Up Welding: Precision in Repair, Surface Cladding, and Direct 3D Metal Deposition
,”
J. Therm. Spray Technol.
,
16
(
3
), pp.
344
348
.
33.
Clark
,
D.
,
Bache
,
M. R.
, and
Whittaker
,
M. T.
,
2008
, “
Shaped Metal Deposition of a Nickel Alloy for Aero Engine Applications
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
439
448
.
34.
Rubin
,
M.
,
1985
, “
Optical Properties of Soda Lime Silica Glasses
,”
Sol. Energy Mater.
,
12
(
4
), pp.
275
288
.
35.
Born
,
M.
, and
Wolf
,
E.
,
1999
,
Principles of Optics
,
Cambridge University Press
,
Cambridge, UK
.
36.
Parikh
,
N.
,
1958
, “
Effect of Atmosphere on Surface Tension of Glass
,”
J. Am. Ceram. Soc.
,
41
(
1
), pp.
18
22
.
37.
Pilon
,
L.
,
Guochang
,
Z.
, and
Viskanta
,
R.
,
2002
, “
Three-Dimensional Flow and Thermal Structure in Glass Melting Furnaces—Part II: Effects of Batch Blanket and Bubbles
,”
Glass Sci. Technol.
,
75
(
3
), pp.
115
124
.
38.
Pascal
,
D.
,
Ciprian-Florin
,
M.
,
Florin
,
B.
, and
Jean-Francois
,
C.
,
2012
, “
Glass Marking With CO2 Laser: Experimental Study of the Interaction Laser-Material
,”
J. Surf. Eng. Mater. Adv. Technol.
,
2
(
1
), pp.
32
39
.
39.
Zeller
,
R.
, and
Pohl
,
R.
,
1971
, “
Thermal Conductivity and Specific Heat of Noncrystalline Solids
,”
Phys. Rev. B
,
4
(
6
), p.
2029
.
40.
Pilon
,
L.
,
Janos
,
F.
, and
Kitamura
,
R.
,
2014
, “
Effective Thermal Conductivity of Soda-Lime Silicate Glassmelts With Different Iron Contents Between 1100 °C and 1500 °C
,”
J. Am. Ceram. Soc.
,
97
(
2
), pp.
442
450
.
41.
Holman
,
J.
,
2009
,
Heat Transfer
,
McGraw-Hill
,
New York
.
42.
Kucuk
,
A.
,
Clare
,
A. G.
, and
Jones
,
L. E.
,
2000
, “
Differences Between Surface and Bulk Properties of Glass Melts—I: Compositional Differences and Influence of Volatilization on Composition and Other Physical Properties
,”
J. Non-Crystalline Solids
,
261
(
1–3
), pp.
28
38
.
43.
Stroud
,
J. S.
,
2003
, “
Striae Quality Grades for Optical Glass
,”
Opt. Eng.
,
42
(
6
), pp.
1618
1624
.
You do not currently have access to this content.