Additive manufacturing (AM) for mechanical devices and electronic components has been actively researched recently. While manufacturing of those mechanical and electronic devices has their own merits, combining them into a single form is expected to grow by creating new applications in the future. The so-called all-printed electromechanical devices have potential applications in mechanical, electrical, and biomedical engineering. In this paper, the recent advancement in all-printed electromechanical devices is reviewed. A brief introduction to various AM techniques is presented first. Then, various examples of sensors, electronics, and electromechanical devices created by AM are reviewed.

References

1.
Weller
,
C.
,
Kleer
,
R.
, and
Piller
,
F. T.
,
2015
, “
Economic Implications of 3D printing: Market Structure Models in Light of Additive Manufacturing Revisited
,”
Int. J. Prod. Econ.
,
164
(0), pp.
43
56
.
2.
ISO/ASTM
,
2015
, “
Additive manufacturing — General principles—Terminology
,” General Terms, International Organization for Standardization, Geneva, Switzerland, Standard No. ISO/ASTM 52900:2015(en).
3.
MacCurdy
,
R.
,
McNicoll
,
A.
, and
Lipson
,
H.
,
2014
, “
Bitblox: Printable Digital Materials for Electromechanical Machines
,”
Int. J. Rob. Res.
,
33
(
10
), pp.
1342
1360
.
4.
Lifton
,
V. A.
,
Lifton
,
G.
, and
Simon
,
S.
,
2014
, “
Options for Additive Rapid Prototyping Methods (3D printing) in MEMS Technology
,”
Rapid Prototyping J.
,
20
(
5
), pp.
403
412
.
5.
Espalin
,
D.
,
Muse
,
D.
,
MacDonald
,
E.
, and
Wicker
,
R.
,
2014
, “
3D Printing Multifunctionality: Structures With Electronics
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
963
978
.
6.
Aguilera
,
E.
,
Ramos
,
J.
,
Espalin
,
D.
,
Cedillos
,
F.
,
Muse
,
D.
,
Wicker
,
R.
, and
MacDonald
,
E.
,
2013
, “
3D Printing of Electro Mechanical Systems
,”
Solid Freeform Fabrication Symposium
, pp.
950
961
.
7.
Binnard
,
M.
,
Cutkosky
,
M.
,
Losleben
,
P.
,
Merz
,
R.
,
Prinz
,
F.
,
Rajagopalan
,
S.
,
Wood
,
W.
,
Finger
,
S.
,
Gupta
,
S.
, and
Weiss
,
L.
,
1996
, “
A Design Interface for 3D Manufacturing
,” proposal to
National Science Foundation and the U.S. Defense Advanced Research Projects Agency
.
8.
Wu
,
S.-Y.
,
Yang
,
C.
,
Hsu
,
W.
, and
Lin
,
L.
,
2015
, “
3D-Printed Microelectronics for Integrated Circuitry and Passive Wireless Sensors
,”
Microsystems & Nanoengineering
,
1
, p.
15013
.
9.
Herderick
,
E.
,
2015
, “
Progress in Additive Manufacturing
,”
JOM
,
67
(
3
), pp.
580
581
.
10.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
,
Springer-Verlag
,
New York
.
11.
Crump
,
S. S. M.
,
1992
, “
Apparatus and Method for Creating Three-Dimensional Objects
,” Stratasys, Minneapolis, MN.
12.
Zein
,
I.
,
Hutmacher
,
D. W.
,
Tan
,
K. C.
, and
Teoh
,
S. H.
,
2002
, “
Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications
,”
Biomaterials
,
23
(
4
), pp.
1169
1185
.
13.
Jafari
,
M. A.
,
Han
,
W.
,
Mohammadi
,
F.
,
Safari
,
A.
,
Danforth
,
S. C.
, and
Langrana
,
N.
,
2000
, “
A Novel System for Fused Deposition of Advanced Multiple Ceramics
,”
Rapid Prototyping J.
,
6
(
3
), pp.
161
175
.
14.
Church
,
K. H. O.
,
Clark
,
P. A.
,
Chen
,
X.
,
Owens
,
M. W.
, and
Stone
,
K. M.
,
2010
, “
Dispensing Patterns Including Lines and Dots at High Speeds
,” nScrypt, Orlando, FL.
15.
Wallace
,
D. B.
,
Royall Cox
,
W.
, and
Hayes
,
D. J.
,
2002
, “
Chapter 7—Direct Write Using Ink-Jet Techniques A2—Piqué, Alberto
,”
Direct-Write Technologies for Rapid Prototyping
,
Academic Press
,
San Diego, CA
, pp.
177
227
.
16.
Sampath
,
S.
,
Longtin
,
J.
,
Gambino
,
R.
,
Herman
,
H.
,
Greenlaw
,
R.
, and
Tormey
,
E.
,
2002
, “
Chapter 9—Direct-Write Thermal Spraying of Multilayer Electronics and Sensor Structures A2—Piqué, Alberto
,”
Direct-Write Technologies for Rapid Prototyping
,
Academic Press
,
San Diego, CA
, pp.
261
302
.
17.
Fitz-Gerald
,
J. M.
,
Rack
,
P. D.
,
Ringeisen
,
B.
,
Young
,
D.
,
Modi
,
R.
,
Auyeung
,
R.
, and
Wu
,
H.-D.
,
2002
, “
Chapter 17—Matrix Assisted Pulsed Laser Evaporation-Direct Write (Maple-Dw): A New Method to Rapidly Prototype Organic and Inorganic Materials A2—Piqué, Alberto
,”
Direct-Write Technologies for Rapid Prototyping
,
Academic Press
,
San Diego, CA
, pp.
517
553
.
18.
Edinger
,
K.
,
2002
, “
Chapter 12—Focused Ion Beams for Direct Writing A2—Piqué, Alberto
,”
Direct-Write Technologies for Rapid Prototyping
,
Academic Press
,
San Diego, CA
, pp.
347
383
.
19.
Peckerar
,
M. C.
,
Bass
,
R.
,
Rhee
,
K. W.
, and
Marrian
,
C. R. K.
,
2002
, “
Chapter 11—Nanolithography With Electron Beams: Theory and Practice A2—Piqué, Alberto
,”
Direct-Write Technologies for Rapid Prototyping
,
Academic Press
,
San Diego, CA
, pp.
313
346
.
20.
He
,
Z.
,
Zhou
,
J. G.
, and
Tseng
,
A. A.
,
2000
, “
Feasibility Study of Chemical Liquid Deposition Based Solid Freeform Fabrication
,”
Mater. Des.
,
21
(
2
), pp.
83
92
.
21.
Helvajian
,
H.
,
2002
, “
Chapter 14—3D Microengineering Via Laser Direct-Write Processing Approaches A2—Piqué, Alberto
,”
Direct-Write Technologies for Rapid Prototyping
,
Academic Press
,
San Diego, CA
, pp.
415
474
.
22.
King
,
B. H. A.
,
2014
, “
Miniature Aerosol Jet and Aerosol Jet Array
,” Optomec, Albuquerque, NM.
23.
Fitz-Gerald
,
J. M.
,
Chrisey
,
D. B.
,
Piqu
,
A.
,
Auyeung
,
R. C. Y.
,
Mohdi
,
R.
,
Young
,
H. D.
,
Wu
,
H. D.
,
Lakeou
,
S.
, and
Chung
,
R.
,
2000
, “
Matrix Assisted Pulsed Laser Evaporation Direct Write (MAPLE DW): A New Method to Rapidly Prototype Active and Passive Electronic Circuit Elements
,”
MRS Online Proc. Libr. Arch.
,
625
, pp.
99
110
.
24.
Sampath
,
S.
,
Herman
,
H.
, and
Greenlaw
,
R.
,
2002
, “
Method and Apparatus for Fine Feature Spray Deposition
,” Patent No. WO 2002007952 A3.
25.
Sampath
,
S.
,
Herman
,
H.
,
Patel
,
A.
,
Gambino
,
R.
,
Greenlaw
,
R.
, and
Tormey
,
E.
,
2000
, “
Thermal Spray Techniques for Fabrication of Meso-Electronics and Sensors
,”
MRS Online Proc. Libr. Arch.
,
624
, pp.
181
188
.
26.
Nassar
,
R.
, and
Dai
,
W.
,
2003
, “
Laser Chemical Vapor Deposition
,”
Modelling of Microfabrication Systems
,
Springer
,
Berlin, Heidelberg
, pp.
77
121
.
27.
Gavish
,
I.
, and
Greenzweig
,
Y.
,
2003
, “
Focused Ion Beam Deposition
,” Patent No. U.S. 20060252255 A9.
28.
Zhou
,
J. G.
,
Addison
,
A.
,
He
,
Z.
, and
Wang
,
F.
,
2005
, “
Chemical Liquid Deposition Process for Microstructure Fabrication
,”
Mater. Des.
,
26
(
8
), pp.
670
679
.
29.
Deckard
,
C. R. A.
,
1989
, “
Method and Apparatus for Producing Parts by Selective Sintering
,” Patent No. U.S. 4863538 A.
30.
Kruth
,
J. P.
,
Mercelis
,
P.
,
Vaerenbergh
,
J. V.
,
Froyen
,
L.
, and
Rombouts
,
M.
,
2005
, “
Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
11
(
1
), pp.
26
36
.
31.
McAlea
,
K. P.
,
Forderhase
,
P. F.
,
Ganninger
,
M. E.
,
Kunig
,
F. W.
, and
Magistro
,
A. J.
,
1998
, “
Selective Laser Sintering With Composite Plastic Material
,” Patent No. U.S. 5733497 A.
32.
Jeantette
,
F. P.
,
Keicher
,
D. M.
,
Romero
,
J. A.
, and
Schanwald
,
L. P.
,
2000
, “
Method and System for Producing Complex-Shape Objects
,” Patent No. U.S. 6046426 A.
33.
Martin
,
R. E.
, and
Hofmeister
,
W. H.
,
2010
, “
Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes
,” Patent No. WO 2010117863 A1.
34.
Sachs
,
E. M. S.
,
Haggerty
,
J. S.
,
Cima
,
M. J.
, and
Williams
,
P. A.
,
1993
, “
Three-Dimensional Printing Techniques
,” Massachusetts Institute of Technology, Cambridge, MA.
35.
Hull
,
C. W. A.
,
1986
, “
Apparatus for Production of Three-Dimensional Objects by Stereolithography
,” UVP, San Gabriel, CA.
36.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Rapid Prototyping J.
,
19
(
3
), pp.
153
165
.
37.
Swanson
,
W. K.
, and
Kremer
,
S. D.
,
1978
, “
Three Dimensional Systems
,” Patent No. 4078229.
38.
Sun
,
H.-B.
, and
Kawata
,
S.
,
2004
, “
Two-Photon Photopolymerization and 3D Lithographic Microfabrication
,”
NMR 3D Analysis Photopolymerization
,
Springer
,
Berlin, Heidelberg
, pp.
169
273
.
39.
Feygin
,
M.
,
1988
, “
Apparatus and Method for Forming an Integral Object From Laminations
,” Patent No. U.S. 5354414 A.
40.
Feygin
,
M.
,
Shkolnik
,
A.
,
Diamond
,
M. N.
, and
Dvorskiy
,
E.
,
1998
, “
Laminated Object Manufacturing System
,” Patent No. U.S. 5730817 A.
41.
Himmer
,
T.
,
Nakagawa
,
T.
, and
Anzai
,
M.
,
1999
, “
Lamination of Metal Sheets
,”
Comput. Ind.
,
39
(
1
), pp.
27
33
.
42.
Yi
,
S.
,
Liu
,
F.
,
Zhang
,
J.
, and
Xiong
,
S.
,
2004
, “
Study of the Key Technologies of LOM for Functional Metal Parts
,”
J. Mater. Process. Technol.
,
150
(
1–2
), pp.
175
181
.
43.
White
,
D.
,
2003
, “
Ultrasonic Object Consolidation
,” Patent No. U.S. 6519500 B1.
44.
Dapino
,
M. J.
,
2014
, “
Smart Structure Integration Through Ultrasonic Additive Manufacturing
,”
ASME
Paper No. SMASIS2014-7710.10.
45.
Khan
,
S.
,
Lorenzelli
,
L.
, and
Dahiya
,
R. S.
,
2015
, “
Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review
,”
IEEE Sens. J.
,
15
(
6
), pp.
3164
3185
.
46.
Michelis
,
F.
,
Bodelot
,
L.
,
Bonnassieux
,
Y.
, and
Lebental
,
B.
,
2015
, “
Highly Reproducible, Hysteresis-Free, Flexible Strain Sensors by Inkjet Printing of Carbon Nanotubes
,”
Carbon
,
95
, pp.
1020
1026
.
47.
Reig
,
C.
, and
Avila-Navarro
,
E.
,
2014
, “
Printed Antennas for Sensor Applications: A Review
,”
IEEE Sens. J.
,
14
(
8
), pp.
2406
2418
.
48.
Shemelya
,
C.
,
Cedillos
,
F.
,
Aguilera
,
E.
,
Espalin
,
D.
,
Muse
,
D.
,
Wicker
,
R.
, and
MacDonald
,
E.
,
2015
, “
Encapsulated Copper Wire and Copper Mesh Capacitive Sensing for 3-D Printing Applications
,”
IEEE Sens. J.
,
15
(
2
), pp.
1280
1286
.
49.
Leigh
,
S. J.
,
Bradley
,
R. J.
,
Purssell
,
C. P.
,
Billson
,
D. R.
, and
Hutchins
,
D. A.
,
2012
, “
A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors
,”
PLoS ONE
,
7
(
11
), p.
e49365
.
50.
Da
,
Z.
,
Tao
,
L.
,
Mei
,
Z.
,
Richard
,
L.
, and
Ben
,
W.
,
2012
, “
Fabrication and Characterization of Aerosol-Jet Printed Strain Sensors for Multifunctional Composite Structures
,”
Smart Mater. Struct.
,
21
(
11
), p.
115008
.
51.
Thompson
,
B.
, and
Yoon
,
H.-S.
,
2013
, “
Aerosol-Printed Strain Sensor Using PEDOT:PSS
,”
IEEE Sens. J.
,
13
(
11
), pp.
4256
4263
.
52.
Hayat
,
A.
, and
Marty
,
J. L.
,
2014
, “
Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring
,”
Sensors (Basel)
,
14
(
6
), pp.
10432
10453
.
53.
Ricciardella
,
F.
,
Alfano
,
B.
,
Loffredo
,
F.
,
Villani
,
F.
,
Polichetti
,
T.
,
Miglietta
,
M. L.
,
Massera
,
E.
, and
Francia
,
G. D.
, “
Inkjet Printed Graphene-Based Chemi-Resistors for Gas Detection in Environmental Conditions
,”
AISEM Annual Conference
,
2015
XVIII, pp.
1
4
.
54.
Dankoco
,
M. D.
,
Tesfay
,
G. Y.
,
Benevent
,
E.
, and
Bendahan
,
M.
,
2016
, “
Temperature Sensor Realized by Inkjet Printing Process on Flexible Substrate
,”
Mater. Sci. Eng. B
,
205
, pp.
1
5
.
55.
Lee
,
C.-H.
,
Chuang
,
W.-Y.
,
Cowan
,
M.
,
Wu
,
W.-J.
, and
Lin
,
C.-T.
,
2014
, “
A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology
,”
Sensors
,
14
(
5
), pp.
9247
9255
.
56.
Stoppa
,
M.
, and
Chiolerio
,
A.
,
2014
, “
Wearable Electronics and Smart Textiles: A Critical Review
,”
Sensors
,
14
(
7
), pp.
11957
11992
.
57.
Harada
,
S.
,
Kanao
,
K.
,
Yamamoto
,
Y.
,
Arie
,
T.
,
Akita
,
S.
, and
Takei
,
K.
,
2014
, “
Fully Printed Flexible Fingerprint-Like Three-Axis Tactile and Slip Force and Temperature Sensors for Artificial Skin
,”
ACS Nano
,
8
(
12
), pp.
12851
12857
.
58.
Someya
,
T.
, and
Sekitani
,
T.
,
2009
, “
Printed Skin-Like Large-Area Flexible Sensors and Actuators
,”
Proc. Chem.
,
1
(
1
), pp.
9
12
.
59.
Peterson
,
G. I.
,
Larsen
,
M. B.
,
Ganter
,
M. A.
,
Storti
,
D. W.
, and
Boydston
,
A. J.
,
2015
, “
3D-Printed Mechanochromic Materials
,”
ACS Appl. Mater. Interfaces
,
7
(
1
), pp.
577
583
.
60.
Salvo
,
P.
,
Raedt
,
R.
,
Carrette
,
E.
,
Schaubroeck
,
D.
,
Vanfleteren
,
J.
, and
Cardon
,
L.
,
2012
, “
A 3D Printed Dry Electrode for ECG/EEG Recording
,”
Sens. Actuators A: Phys.
,
174
(0), pp.
96
102
.
61.
Pemberton
,
R.
,
Cox
,
T.
,
Tuffin
,
R.
,
Drago
,
G.
,
Griffiths
,
J.
,
Pittson
,
R.
,
Johnson
,
G.
,
Xu
,
J.
,
Sage
,
I.
,
Davies
,
R.
,
Jackson
,
S.
,
Kenna
,
G.
,
Luxton
,
R.
, and
Hart
,
J.
,
2014
, “
Fabrication and Evaluation of a Micro(Bio)Sensor Array Chip for Multiple Parallel Measurements of Important Cell Biomarkers
,”
Sensors
,
14
(
11
), p.
20519
.
62.
Crowley
,
K.
,
Morrin
,
A.
,
Hernandez
,
A.
,
O'Malley
,
E.
,
Whitten
,
P. G.
,
Wallace
,
G. G.
,
Smyth
,
M. R.
, and
Killard
,
A. J.
,
2008
, “
Fabrication of an Ammonia Gas Sensor Using Inkjet-Printed Polyaniline Nanoparticles
,”
Talanta
,
77
(
2
), pp.
710
717
.
63.
Komuro
,
N.
,
Takaki
,
S.
,
Suzuki
,
K.
, and
Citterio
,
D.
,
2013
, “
Inkjet Printed (Bio)Chemical Sensing Devices
,”
Anal. Bioanal. Chem.
,
405
(
17
), pp.
5785
5805
.
64.
Ku
,
S.
,
Palanisamy
,
S.
, and
Chen
,
S.-M.
,
2013
, “
Highly Selective Dopamine Electrochemical Sensor Based on Electrochemically Pretreated Graphite and Nafion Composite Modified Screen Printed Carbon Electrode
,”
J. Colloid Interface Sci.
,
411
(0), pp.
182
186
.
65.
Li
,
B.
,
Santhanam
,
S.
,
Schultz
,
L.
,
Jeffries-El
,
M.
,
Iovu
,
M. C.
,
Sauvé
,
G.
,
Cooper
,
J.
,
Zhang
,
R.
,
Revelli
,
J. C.
,
Kusne
,
A. G.
,
Snyder
,
J. L.
,
Kowalewski
,
T.
,
Weiss
,
L. E.
,
McCullough
,
R. D.
,
Fedder
,
G. K.
, and
Lambeth
,
D. N.
,
2007
, “
Inkjet Printed Chemical Sensor Array Based on Polythiophene Conductive Polymers
,”
Sens. Actuators B: Chem.
,
123
(
2
), pp.
651
660
.
66.
Mannoor
,
M. S.
,
Jiang
,
Z.
,
James
,
T.
,
Kong
,
Y. L.
,
Malatesta
,
K. A.
,
Soboyejo
,
W. O.
,
Verma
,
N.
,
Gracias
,
D. H.
, and
McAlpine
,
M. C.
,
2013
, “
3D Printed Bionic Ears
,”
Nano Lett.
,
13
(
6
), pp.
2634
2639
.
67.
Shitanda
,
I.
,
Okumura
,
A.
,
Itagaki
,
M.
,
Watanabe
,
K.
, and
Asano
,
Y.
,
2009
, “
Screen-Printed Atmospheric Corrosion Monitoring Sensor Based on Electrochemical Impedance Spectroscopy
,”
Sens. Actuators B: Chem.
,
139
(
2
), pp.
292
297
.
68.
Kang
,
B. J.
,
Lee
,
C. K.
, and
Oh
,
J. H.
,
2012
, “
All-Inkjet-Printed Electrical Components and Circuit Fabrication on a Plastic Substrate
,”
Microelectron. Eng.
,
97
(0), pp.
251
254
.
69.
Jones
,
C. S.
,
Lu
,
X.
,
Renn
,
M.
,
Stroder
,
M.
, and
Shih
,
W.-S.
,
2010
, “
Aerosol-Jet-Printed, High-Speed, Flexible Thin-Film Transistor Made Using Single-Walled Carbon Nanotube Solution
,”
Microelectron. Eng.
,
87
(
3
), pp.
434
437
.
70.
Li
,
Y. V.
,
Mourey
,
D. A.
,
Loth
,
M. A.
,
Zhao
,
D. A.
,
Anthony
,
J. E.
, and
Jackson
,
T. N.
,
2013
, “
Hybrid Inorganic/Organic Complementary Circuits Using PEALD ZnO and Ink-Jet Printed diF-TESADT TFTs
,”
Org. Electron.
,
14
(
10
), pp.
2411
2417
.
71.
Chang
,
J.
,
Zhang
,
X.
,
Ge
,
T.
, and
Zhou
,
J.
,
2014
, “
Fully Printed Electronics on Flexible Substrates: High Gain Amplifiers and DAC
,”
Org. Electron.
,
15
(
3
), pp.
701
710
.
72.
Kim
,
J.
,
Na
,
S.-I.
, and
Kim
,
H.-K.
,
2012
, “
Inkjet Printing of Transparent InZnSnO Conducting Electrodes From Nano-Particle Ink for Printable Organic Photovoltaics
,”
Sol. Energy Mater. Sol. Cells
,
98
(0), pp.
424
432
.
73.
Saehana
,
S.
,
Darsikin
,
Yuliza
,
E.
,
Arifin
,
P.
,
Khairurrijal
, and
Abdullah
,
M.
,
2014
, “
A New Approach for Fabricating Low Cost DSSC by Using Carbon-Ink From Inkjet Printer and Its Improvement Efficiency by Depositing Metal Bridge Between Titanium Dioxide Particles
,”
ASME J. Sol. Energy Eng.
,
136
(
4
), p.
044504
.
74.
Park
,
J.-I.
,
Lee
,
G.-Y.
,
Yang
,
J.
,
Kim
,
C.-S.
, and
Ahn
,
S.-H.
,
2016
, “
Flexible Ceramic-Elastomer Composite Piezoelectric Energy Harvester Fabricated by Additive Manufacturing
,”
J. Compos. Mater.
,
50
(
12
), pp.
1573
1579
.
75.
Braam
,
K. T.
,
Volkman
,
S. K.
, and
Subramanian
,
V.
,
2012
, “
Characterization and Optimization of a Printed, Primary Silver–Zinc Battery
,”
J. Power Sources
,
199
(0), pp.
367
372
.
76.
Nguyen
,
T. H.
,
Fraiwan
,
A.
, and
Choi
,
S.
,
2014
, “
Paper-Based Batteries: A Review
,”
Biosens. Bioelectron.
,
54
(0), pp.
640
649
.
77.
Zhu
,
C.
,
Han
,
T. Y.-J.
,
Duoss
,
E. B.
,
Golobic
,
A. M.
,
Kuntz
,
J. D.
,
Spadaccini
,
C. M.
, and
Worsley
,
M. A.
,
2015
, “
Highly Compressible 3D Periodic Graphene Aerogel Microlattices
,”
Nat. Commun.
,
6
, p.
6962
.
78.
Sun
,
K.
,
Wei
,
T.
,
Ahn
,
B. Y.
,
Seo
,
J.
,
Dillon
,
S.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li-Ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
.
79.
Fuller
,
S. B.
,
Wilhelm
,
E. J.
, and
Jacobson
,
J. M.
,
2002
, “
Ink-Jet Printed Nanoparticle Microelectromechanical Systems
,”
J. Microelectromech. Syst.
,
11
(
1
), pp.
54
60
.
80.
Vaezi
,
M.
,
Seitz
,
H.
, and
Yang
,
S.
,
2013
, “
A Review on 3D Micro-Additive Manufacturing Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1721
1754
.
81.
Comina
,
G.
,
Suska
,
A.
, and
Filippini
,
D.
,
2014
, “
PDMS Lab-on-a-Chip Fabrication Using 3D Printed Templates
,”
Lab Chip
,
14
(
2
), pp.
424
430
.
82.
Comina
,
G.
,
Suska
,
A.
, and
Filippini
,
D.
,
2014
, “
Low Cost Lab-on-a-Chip Prototyping With a Consumer Grade 3D Printer
,”
Lab Chip
,
14
(
16
), pp.
2978
2982
.
83.
Kitson
,
P. J.
,
Rosnes
,
M. H.
,
Sans
,
V.
,
Dragone
,
V.
, and
Cronin
,
L.
,
2012
, “
Configurable 3D-Printed Millifluidic and Microfluidic ‘Lab on a Chip’ Reactionware Devices
,”
Lab Chip
,
12
(
18
), pp.
3267
3271
.
84.
Pabst
,
O.
,
Perelaer
,
J.
,
Beckert
,
E.
,
Schubert
,
U. S.
,
Eberhardt
,
R.
, and
Tünnermann
,
A.
,
2013
, “
All Inkjet-Printed Piezoelectric Polymer Actuators: Characterization and Applications for Micropumps in Lab-on-a-Chip Systems
,”
Org. Electron.
,
14
(
12
), pp.
3423
3429
.
85.
Farooqui
,
M. F.
,
Claudel
,
C.
, and
Shamim
,
A.
,
2014
, “
An Inkjet-Printed Buoyant 3-D Lagrangian Sensor for Real-Time Flood Monitoring
,”
IEEE Trans. Antennas Propag.
,
62
(
6
), pp.
3354
3359
.
86.
Ishiguro
,
Y.
, and
Poupyrev
,
I.
,
2014
, “
3D Printed Interactive Speakers
,”
SIGCHI Conference on Human Factors in Computing Systems
, ACM, Toronto, ON, Canada, pp.
1733
1742
.
87.
Maeda
,
R.
,
Tsaur
,
J. J.
,
Lee
,
S. H.
, and
Ichiki
,
M.
,
2005
, “
Microactuators Based on Thin Films
,”
Electroceramic-Based MEMS
,
N.
Setter
, ed.,
Springer
,
New York
, pp.
19
35
.
88.
Koray Akdogan
,
E.
,
Allahverdi
,
M.
, and
Safari
,
A.
,
2005
, “
Piezoelectric Composites for Sensor and Actuator Applications
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
52
(
5
), pp.
746
775
.
89.
Glasschroeder
,
J.
,
Prager
,
E.
, and
Zaeh
,
M. F.
,
2015
, “
Powder-Bed-Based 3D-Printing of Function Integrated Parts
,”
Rapid Prototyping J.
,
21
(
2
), pp.
207
215
.
90.
Roberson
,
D.
,
Shemelya
,
C. M.
,
MacDonald
,
E.
, and
Wicker
,
R.
,
2015
, “
Expanding the Applicability of FDM-Type Technologies Through Materials Development
,”
Rapid Prototyping J.
,
21
(
2
), pp.
137
143
.
91.
Graphene 3D Lab
,
2015
, “
Conductive Graphene Filament
,” http://www.blackmagic3d.com/product-p/grphn-175.htm
92.
Schulz
,
S.
,
Ltkebohle
,
I.
, and
Wachsmuth
,
S.
, “
An Affordable, 3D-Printable Camera Eye With Two Active Degrees of Freedom for an Anthropomorphic Robot
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
764
771
.
93.
Meisel
,
N. A.
,
Elliott
,
A. M.
, and
Williams
,
C. B.
,
2015
, “
A Procedure for Creating Actuated Joints Via Embedding Shape Memory Alloys in PolyJet 3D Printing
,”
J. Intell. Mater. Syst. Struct.
,
26
(
12
), pp.
1498
1512
.
94.
Stiltner
,
L.
,
Elliott
,
A.
, and
Williams
,
C.
,
2011
, “
A Method for Creating Actuated Joints Via Fiber Embedding in a Polyjet 3D Printing Process
,”
22nd Annual International Solid Freeform Fabrication Symposium
, pp.
583
592
.
95.
Ma
,
R. R.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2013
, “
A Modular, Open-Source 3D Printed Underactuated Hand
,”
2013 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
2737
2743
.
96.
Umedachi
,
T.
,
Vikas
,
V.
, and
Trimmer
,
B. A.
,
2013
, “
Highly Deformable 3-D Printed Soft Robot Generating Inching and Crawling Locomotions With Variable Friction Legs
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
4590
4595
.
97.
Cohen
,
E.
,
Vikas
,
V.
,
Trimmer
,
B.
, and
McCarthy
,
S.
, “
Design Methodologies for Soft-Material Robots Through Additive Manufacturing, From Prototyping to Locomotion
,”
ASME
Paper No. DETC2015-47507.
98.
Xiang Gu
,
G.
,
Su
,
I.
,
Sharma
,
S.
,
Voros
,
J. L.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2016
, “
Three-Dimensional-Printing of Bio-Inspired Composites
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021006
.
99.
MacDonald
,
E.
,
Salas
,
R.
,
Espalin
,
D.
,
Perez
,
M.
,
Aguilera
,
E.
,
Muse
,
D.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing for the Rapid Prototyping of Structural Electronics
,”
IEEE Access
,
2
, pp.
234
242
.
100.
Mayer
,
D.
,
Stoffregen
,
H. A.
,
Heuss
,
O.
,
Thiel
,
J.
,
Abele
,
E.
, and
Melz
,
T.
,
2016
, “
Additive Manufacturing of Active Struts for Piezoelectric Shunt Damping
,”
J. Intell. Mater. Syst. Struct.
,
27
, pp.
743
754
.
101.
Malone
,
E.
, and
Lipson
,
H.
,
2006
, “
Freeform Fabrication of Ionomeric Polymer-Metal Composite Actuators
,”
Rapid Prototyping J.
,
12
(
5
), pp.
244
253
.
102.
Carrico
,
J. D.
,
Traeden
,
N. W.
,
Aureli
,
M.
, and
Leang
,
K. K.
,
2015
, “
Fused Filament Additive Manufacturing of Ionic Polymer-Metal Composite Soft Active 3D Structures
,”
ASME
Paper No. SMASIS2015-8895.
103.
Palmer
,
J. A.
,
Jokiel
,
B.
,
Nordquist
,
C. D.
,
Kast
,
B. A.
,
Atwood
,
C. J.
,
Grant
,
E.
,
Livingston
,
F. J.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2006
, “
Mesoscale RF Relay Enabled by Integrated Rapid Manufacturing
,”
Rapid Prototyping J.
,
12
(
3
), pp.
148
155
.
104.
Eun
,
K.
,
Chon
,
M.-W.
,
Yoo
,
T.-H.
,
Song
,
Y.-W.
, and
Choa
,
S.-H.
,
2015
, “
Electromechanical Properties of Printed Copper Ink Film Using a White Flash Light Annealing Process for Flexible Electronics
,”
Microelectron. Reliab.
,
55
(
5
), pp.
838
845
.
105.
Tormene
,
P.
,
Bartolo
,
M.
,
De Nunzio
,
A. M.
,
Fecchio
,
F.
,
Quaglini
,
S.
,
Tassorelli
,
C.
, and
Sandrini
,
G.
,
2012
, “
Estimation of Human Trunk Movements by Wearable Strain Sensors and Improvement of Sensor's Placement on Intelligent Biomedical Clothes
,”
Biomed. Eng. Online
,
11
(
1
), pp.
95
95
.
106.
Kim
,
K. J.
, and
Shahinpoor
,
M.
,
2002
, “
A Novel Method of Manufacturing Three-Dimensional Ionic Polymer–Metal Composites (IPMCS) Biomimetic Sensors, Actuators and Artificial Muscles
,”
Polymer
,
43
(
3
), pp.
797
802
.
107.
Vatani
,
M.
,
Engeberg
,
E. D.
, and
Choi
,
J.-W.
,
2013
, “
Hybrid Additive Manufacturing of 3D Compliant Tactile Sensors
,”
ASME
Paper No. SMASIS2015-8895.
108.
Madden
,
K. E.
, and
Deshpande
,
A. D.
,
2015
, “
On Integration of Additive Manufacturing During the Design and Development of a Rehabilitation Robot: A Case Study
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111417
.
109.
Enoch
,
A.
, and
Vijayakumar
,
S.
,
2015
, “
Rapid Manufacture of Novel Variable Impedance Robots
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011003
.
You do not currently have access to this content.