Additive manufacturing (AM) for mechanical devices and electronic components has been actively researched recently. While manufacturing of those mechanical and electronic devices has their own merits, combining them into a single form is expected to grow by creating new applications in the future. The so-called all-printed electromechanical devices have potential applications in mechanical, electrical, and biomedical engineering. In this paper, the recent advancement in all-printed electromechanical devices is reviewed. A brief introduction to various AM techniques is presented first. Then, various examples of sensors, electronics, and electromechanical devices created by AM are reviewed.
Issue Section:
Review Article
Keywords:
Additive manufacturing
References
1.
Weller
, C.
, Kleer
, R.
, and Piller
, F. T.
, 2015
, “Economic Implications of 3D printing: Market Structure Models in Light of Additive Manufacturing Revisited
,” Int. J. Prod. Econ.
, 164
(0), pp. 43
–56
.2.
ISO/ASTM
, 2015
, “Additive manufacturing — General principles—Terminology
,” General Terms, International Organization for Standardization, Geneva, Switzerland, Standard No. ISO/ASTM 52900:2015(en).3.
MacCurdy
, R.
, McNicoll
, A.
, and Lipson
, H.
, 2014
, “Bitblox: Printable Digital Materials for Electromechanical Machines
,” Int. J. Rob. Res.
, 33
(10
), pp. 1342
–1360
.4.
Lifton
, V. A.
, Lifton
, G.
, and Simon
, S.
, 2014
, “Options for Additive Rapid Prototyping Methods (3D printing) in MEMS Technology
,” Rapid Prototyping J.
, 20
(5
), pp. 403
–412
.5.
Espalin
, D.
, Muse
, D.
, MacDonald
, E.
, and Wicker
, R.
, 2014
, “3D Printing Multifunctionality: Structures With Electronics
,” Int. J. Adv. Manuf. Technol.
, 72
(5–8
), pp. 963
–978
.6.
Aguilera
, E.
, Ramos
, J.
, Espalin
, D.
, Cedillos
, F.
, Muse
, D.
, Wicker
, R.
, and MacDonald
, E.
, 2013
, “3D Printing of Electro Mechanical Systems
,” Solid Freeform Fabrication Symposium
, pp. 950
–961
.7.
Binnard
, M.
, Cutkosky
, M.
, Losleben
, P.
, Merz
, R.
, Prinz
, F.
, Rajagopalan
, S.
, Wood
, W.
, Finger
, S.
, Gupta
, S.
, and Weiss
, L.
, 1996
, “A Design Interface for 3D Manufacturing
,” proposal to National Science Foundation and the U.S. Defense Advanced Research Projects Agency
.8.
Wu
, S.-Y.
, Yang
, C.
, Hsu
, W.
, and Lin
, L.
, 2015
, “3D-Printed Microelectronics for Integrated Circuitry and Passive Wireless Sensors
,” Microsystems & Nanoengineering
, 1
, p. 15013
.9.
Herderick
, E.
, 2015
, “Progress in Additive Manufacturing
,” JOM
, 67
(3
), pp. 580
–581
.10.
Gibson
, I.
, Rosen
, D. W.
, and Stucker
, B.
, 2015
, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, Springer-Verlag
, New York
.11.
Crump
, S. S. M.
, 1992
, “Apparatus and Method for Creating Three-Dimensional Objects
,” Stratasys, Minneapolis, MN.12.
Zein
, I.
, Hutmacher
, D. W.
, Tan
, K. C.
, and Teoh
, S. H.
, 2002
, “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications
,” Biomaterials
, 23
(4
), pp. 1169
–1185
.13.
Jafari
, M. A.
, Han
, W.
, Mohammadi
, F.
, Safari
, A.
, Danforth
, S. C.
, and Langrana
, N.
, 2000
, “A Novel System for Fused Deposition of Advanced Multiple Ceramics
,” Rapid Prototyping J.
, 6
(3
), pp. 161
–175
.14.
Church
, K. H. O.
, Clark
, P. A.
, Chen
, X.
, Owens
, M. W.
, and Stone
, K. M.
, 2010
, “Dispensing Patterns Including Lines and Dots at High Speeds
,” nScrypt, Orlando, FL.15.
Wallace
, D. B.
, Royall Cox
, W.
, and Hayes
, D. J.
, 2002
, “Chapter 7—Direct Write Using Ink-Jet Techniques A2—Piqué, Alberto
,” Direct-Write Technologies for Rapid Prototyping
, Academic Press
, San Diego, CA
, pp. 177
–227
.16.
Sampath
, S.
, Longtin
, J.
, Gambino
, R.
, Herman
, H.
, Greenlaw
, R.
, and Tormey
, E.
, 2002
, “Chapter 9—Direct-Write Thermal Spraying of Multilayer Electronics and Sensor Structures A2—Piqué, Alberto
,” Direct-Write Technologies for Rapid Prototyping
, Academic Press
, San Diego, CA
, pp. 261
–302
.17.
Fitz-Gerald
, J. M.
, Rack
, P. D.
, Ringeisen
, B.
, Young
, D.
, Modi
, R.
, Auyeung
, R.
, and Wu
, H.-D.
, 2002
, “Chapter 17—Matrix Assisted Pulsed Laser Evaporation-Direct Write (Maple-Dw): A New Method to Rapidly Prototype Organic and Inorganic Materials A2—Piqué, Alberto
,” Direct-Write Technologies for Rapid Prototyping
, Academic Press
, San Diego, CA
, pp. 517
–553
.18.
Edinger
, K.
, 2002
, “Chapter 12—Focused Ion Beams for Direct Writing A2—Piqué, Alberto
,” Direct-Write Technologies for Rapid Prototyping
, Academic Press
, San Diego, CA
, pp. 347
–383
.19.
Peckerar
, M. C.
, Bass
, R.
, Rhee
, K. W.
, and Marrian
, C. R. K.
, 2002
, “Chapter 11—Nanolithography With Electron Beams: Theory and Practice A2—Piqué, Alberto
,” Direct-Write Technologies for Rapid Prototyping
, Academic Press
, San Diego, CA
, pp. 313
–346
.20.
He
, Z.
, Zhou
, J. G.
, and Tseng
, A. A.
, 2000
, “Feasibility Study of Chemical Liquid Deposition Based Solid Freeform Fabrication
,” Mater. Des.
, 21
(2
), pp. 83
–92
.21.
Helvajian
, H.
, 2002
, “Chapter 14—3D Microengineering Via Laser Direct-Write Processing Approaches A2—Piqué, Alberto
,” Direct-Write Technologies for Rapid Prototyping
, Academic Press
, San Diego, CA
, pp. 415
–474
.22.
King
, B. H. A.
, 2014
, “Miniature Aerosol Jet and Aerosol Jet Array
,” Optomec, Albuquerque, NM.23.
Fitz-Gerald
, J. M.
, Chrisey
, D. B.
, Piqu
, A.
, Auyeung
, R. C. Y.
, Mohdi
, R.
, Young
, H. D.
, Wu
, H. D.
, Lakeou
, S.
, and Chung
, R.
, 2000
, “Matrix Assisted Pulsed Laser Evaporation Direct Write (MAPLE DW): A New Method to Rapidly Prototype Active and Passive Electronic Circuit Elements
,” MRS Online Proc. Libr. Arch.
, 625
, pp. 99
–110
.24.
Sampath
, S.
, Herman
, H.
, and Greenlaw
, R.
, 2002
, “Method and Apparatus for Fine Feature Spray Deposition
,” Patent No. WO 2002007952 A3.25.
Sampath
, S.
, Herman
, H.
, Patel
, A.
, Gambino
, R.
, Greenlaw
, R.
, and Tormey
, E.
, 2000
, “Thermal Spray Techniques for Fabrication of Meso-Electronics and Sensors
,” MRS Online Proc. Libr. Arch.
, 624
, pp. 181
–188
.26.
Nassar
, R.
, and Dai
, W.
, 2003
, “Laser Chemical Vapor Deposition
,” Modelling of Microfabrication Systems
, Springer
, Berlin, Heidelberg
, pp. 77
–121
.27.
Gavish
, I.
, and Greenzweig
, Y.
, 2003
, “Focused Ion Beam Deposition
,” Patent No. U.S. 20060252255 A9.28.
Zhou
, J. G.
, Addison
, A.
, He
, Z.
, and Wang
, F.
, 2005
, “Chemical Liquid Deposition Process for Microstructure Fabrication
,” Mater. Des.
, 26
(8
), pp. 670
–679
.29.
Deckard
, C. R. A.
, 1989
, “Method and Apparatus for Producing Parts by Selective Sintering
,” Patent No. U.S. 4863538 A.30.
Kruth
, J. P.
, Mercelis
, P.
, Vaerenbergh
, J. V.
, Froyen
, L.
, and Rombouts
, M.
, 2005
, “Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting
,” Rapid Prototyping J.
, 11
(1
), pp. 26
–36
.31.
McAlea
, K. P.
, Forderhase
, P. F.
, Ganninger
, M. E.
, Kunig
, F. W.
, and Magistro
, A. J.
, 1998
, “Selective Laser Sintering With Composite Plastic Material
,” Patent No. U.S. 5733497 A.32.
Jeantette
, F. P.
, Keicher
, D. M.
, Romero
, J. A.
, and Schanwald
, L. P.
, 2000
, “Method and System for Producing Complex-Shape Objects
,” Patent No. U.S. 6046426 A.33.
Martin
, R. E.
, and Hofmeister
, W. H.
, 2010
, “Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes
,” Patent No. WO 2010117863 A1.34.
Sachs
, E. M. S.
, Haggerty
, J. S.
, Cima
, M. J.
, and Williams
, P. A.
, 1993
, “Three-Dimensional Printing Techniques
,” Massachusetts Institute of Technology, Cambridge, MA.35.
Hull
, C. W. A.
, 1986
, “Apparatus for Production of Three-Dimensional Objects by Stereolithography
,” UVP, San Gabriel, CA.36.
Zhou
, C.
, Chen
, Y.
, Yang
, Z.
, and Khoshnevis
, B.
, 2013
, “Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,” Rapid Prototyping J.
, 19
(3
), pp. 153
–165
.37.
Swanson
, W. K.
, and Kremer
, S. D.
, 1978
, “Three Dimensional Systems
,” Patent No. 4078229.38.
Sun
, H.-B.
, and Kawata
, S.
, 2004
, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication
,” NMR 3D Analysis Photopolymerization
, Springer
, Berlin, Heidelberg
, pp. 169
–273
.39.
Feygin
, M.
, 1988
, “Apparatus and Method for Forming an Integral Object From Laminations
,” Patent No. U.S. 5354414 A.40.
Feygin
, M.
, Shkolnik
, A.
, Diamond
, M. N.
, and Dvorskiy
, E.
, 1998
, “Laminated Object Manufacturing System
,” Patent No. U.S. 5730817 A.41.
Himmer
, T.
, Nakagawa
, T.
, and Anzai
, M.
, 1999
, “Lamination of Metal Sheets
,” Comput. Ind.
, 39
(1
), pp. 27
–33
.42.
Yi
, S.
, Liu
, F.
, Zhang
, J.
, and Xiong
, S.
, 2004
, “Study of the Key Technologies of LOM for Functional Metal Parts
,” J. Mater. Process. Technol.
, 150
(1–2
), pp. 175
–181
.43.
White
, D.
, 2003
, “Ultrasonic Object Consolidation
,” Patent No. U.S. 6519500 B1.44.
Dapino
, M. J.
, 2014
, “Smart Structure Integration Through Ultrasonic Additive Manufacturing
,” ASME
Paper No. SMASIS2014-7710.10.45.
Khan
, S.
, Lorenzelli
, L.
, and Dahiya
, R. S.
, 2015
, “Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review
,” IEEE Sens. J.
, 15
(6
), pp. 3164
–3185
.46.
Michelis
, F.
, Bodelot
, L.
, Bonnassieux
, Y.
, and Lebental
, B.
, 2015
, “Highly Reproducible, Hysteresis-Free, Flexible Strain Sensors by Inkjet Printing of Carbon Nanotubes
,” Carbon
, 95
, pp. 1020
–1026
.47.
Reig
, C.
, and Avila-Navarro
, E.
, 2014
, “Printed Antennas for Sensor Applications: A Review
,” IEEE Sens. J.
, 14
(8
), pp. 2406
–2418
.48.
Shemelya
, C.
, Cedillos
, F.
, Aguilera
, E.
, Espalin
, D.
, Muse
, D.
, Wicker
, R.
, and MacDonald
, E.
, 2015
, “Encapsulated Copper Wire and Copper Mesh Capacitive Sensing for 3-D Printing Applications
,” IEEE Sens. J.
, 15
(2
), pp. 1280
–1286
.49.
Leigh
, S. J.
, Bradley
, R. J.
, Purssell
, C. P.
, Billson
, D. R.
, and Hutchins
, D. A.
, 2012
, “A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors
,” PLoS ONE
, 7
(11
), p. e49365
.50.
Da
, Z.
, Tao
, L.
, Mei
, Z.
, Richard
, L.
, and Ben
, W.
, 2012
, “Fabrication and Characterization of Aerosol-Jet Printed Strain Sensors for Multifunctional Composite Structures
,” Smart Mater. Struct.
, 21
(11
), p. 115008
.51.
Thompson
, B.
, and Yoon
, H.-S.
, 2013
, “Aerosol-Printed Strain Sensor Using PEDOT:PSS
,” IEEE Sens. J.
, 13
(11
), pp. 4256
–4263
.52.
Hayat
, A.
, and Marty
, J. L.
, 2014
, “Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring
,” Sensors (Basel)
, 14
(6
), pp. 10432
–10453
.53.
Ricciardella
, F.
, Alfano
, B.
, Loffredo
, F.
, Villani
, F.
, Polichetti
, T.
, Miglietta
, M. L.
, Massera
, E.
, and Francia
, G. D.
, “Inkjet Printed Graphene-Based Chemi-Resistors for Gas Detection in Environmental Conditions
,” AISEM Annual Conference
, 2015
XVIII, pp. 1
–4
.54.
Dankoco
, M. D.
, Tesfay
, G. Y.
, Benevent
, E.
, and Bendahan
, M.
, 2016
, “Temperature Sensor Realized by Inkjet Printing Process on Flexible Substrate
,” Mater. Sci. Eng. B
, 205
, pp. 1
–5
.55.
Lee
, C.-H.
, Chuang
, W.-Y.
, Cowan
, M.
, Wu
, W.-J.
, and Lin
, C.-T.
, 2014
, “A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology
,” Sensors
, 14
(5
), pp. 9247
–9255
.56.
Stoppa
, M.
, and Chiolerio
, A.
, 2014
, “Wearable Electronics and Smart Textiles: A Critical Review
,” Sensors
, 14
(7
), pp. 11957
–11992
.57.
Harada
, S.
, Kanao
, K.
, Yamamoto
, Y.
, Arie
, T.
, Akita
, S.
, and Takei
, K.
, 2014
, “Fully Printed Flexible Fingerprint-Like Three-Axis Tactile and Slip Force and Temperature Sensors for Artificial Skin
,” ACS Nano
, 8
(12
), pp. 12851
–12857
.58.
Someya
, T.
, and Sekitani
, T.
, 2009
, “Printed Skin-Like Large-Area Flexible Sensors and Actuators
,” Proc. Chem.
, 1
(1
), pp. 9
–12
.59.
Peterson
, G. I.
, Larsen
, M. B.
, Ganter
, M. A.
, Storti
, D. W.
, and Boydston
, A. J.
, 2015
, “3D-Printed Mechanochromic Materials
,” ACS Appl. Mater. Interfaces
, 7
(1
), pp. 577
–583
.60.
Salvo
, P.
, Raedt
, R.
, Carrette
, E.
, Schaubroeck
, D.
, Vanfleteren
, J.
, and Cardon
, L.
, 2012
, “A 3D Printed Dry Electrode for ECG/EEG Recording
,” Sens. Actuators A: Phys.
, 174
(0), pp. 96
–102
.61.
Pemberton
, R.
, Cox
, T.
, Tuffin
, R.
, Drago
, G.
, Griffiths
, J.
, Pittson
, R.
, Johnson
, G.
, Xu
, J.
, Sage
, I.
, Davies
, R.
, Jackson
, S.
, Kenna
, G.
, Luxton
, R.
, and Hart
, J.
, 2014
, “Fabrication and Evaluation of a Micro(Bio)Sensor Array Chip for Multiple Parallel Measurements of Important Cell Biomarkers
,” Sensors
, 14
(11
), p. 20519
.62.
Crowley
, K.
, Morrin
, A.
, Hernandez
, A.
, O'Malley
, E.
, Whitten
, P. G.
, Wallace
, G. G.
, Smyth
, M. R.
, and Killard
, A. J.
, 2008
, “Fabrication of an Ammonia Gas Sensor Using Inkjet-Printed Polyaniline Nanoparticles
,” Talanta
, 77
(2
), pp. 710
–717
.63.
Komuro
, N.
, Takaki
, S.
, Suzuki
, K.
, and Citterio
, D.
, 2013
, “Inkjet Printed (Bio)Chemical Sensing Devices
,” Anal. Bioanal. Chem.
, 405
(17
), pp. 5785
–5805
.64.
Ku
, S.
, Palanisamy
, S.
, and Chen
, S.-M.
, 2013
, “Highly Selective Dopamine Electrochemical Sensor Based on Electrochemically Pretreated Graphite and Nafion Composite Modified Screen Printed Carbon Electrode
,” J. Colloid Interface Sci.
, 411
(0), pp. 182
–186
.65.
Li
, B.
, Santhanam
, S.
, Schultz
, L.
, Jeffries-El
, M.
, Iovu
, M. C.
, Sauvé
, G.
, Cooper
, J.
, Zhang
, R.
, Revelli
, J. C.
, Kusne
, A. G.
, Snyder
, J. L.
, Kowalewski
, T.
, Weiss
, L. E.
, McCullough
, R. D.
, Fedder
, G. K.
, and Lambeth
, D. N.
, 2007
, “Inkjet Printed Chemical Sensor Array Based on Polythiophene Conductive Polymers
,” Sens. Actuators B: Chem.
, 123
(2
), pp. 651
–660
.66.
Mannoor
, M. S.
, Jiang
, Z.
, James
, T.
, Kong
, Y. L.
, Malatesta
, K. A.
, Soboyejo
, W. O.
, Verma
, N.
, Gracias
, D. H.
, and McAlpine
, M. C.
, 2013
, “3D Printed Bionic Ears
,” Nano Lett.
, 13
(6
), pp. 2634
–2639
.67.
Shitanda
, I.
, Okumura
, A.
, Itagaki
, M.
, Watanabe
, K.
, and Asano
, Y.
, 2009
, “Screen-Printed Atmospheric Corrosion Monitoring Sensor Based on Electrochemical Impedance Spectroscopy
,” Sens. Actuators B: Chem.
, 139
(2
), pp. 292
–297
.68.
Kang
, B. J.
, Lee
, C. K.
, and Oh
, J. H.
, 2012
, “All-Inkjet-Printed Electrical Components and Circuit Fabrication on a Plastic Substrate
,” Microelectron. Eng.
, 97
(0), pp. 251
–254
.69.
Jones
, C. S.
, Lu
, X.
, Renn
, M.
, Stroder
, M.
, and Shih
, W.-S.
, 2010
, “Aerosol-Jet-Printed, High-Speed, Flexible Thin-Film Transistor Made Using Single-Walled Carbon Nanotube Solution
,” Microelectron. Eng.
, 87
(3
), pp. 434
–437
.70.
Li
, Y. V.
, Mourey
, D. A.
, Loth
, M. A.
, Zhao
, D. A.
, Anthony
, J. E.
, and Jackson
, T. N.
, 2013
, “Hybrid Inorganic/Organic Complementary Circuits Using PEALD ZnO and Ink-Jet Printed diF-TESADT TFTs
,” Org. Electron.
, 14
(10
), pp. 2411
–2417
.71.
Chang
, J.
, Zhang
, X.
, Ge
, T.
, and Zhou
, J.
, 2014
, “Fully Printed Electronics on Flexible Substrates: High Gain Amplifiers and DAC
,” Org. Electron.
, 15
(3
), pp. 701
–710
.72.
Kim
, J.
, Na
, S.-I.
, and Kim
, H.-K.
, 2012
, “Inkjet Printing of Transparent InZnSnO Conducting Electrodes From Nano-Particle Ink for Printable Organic Photovoltaics
,” Sol. Energy Mater. Sol. Cells
, 98
(0), pp. 424
–432
.73.
Saehana
, S.
, Darsikin
, Yuliza
, E.
, Arifin
, P.
, Khairurrijal
, and Abdullah
, M.
, 2014
, “A New Approach for Fabricating Low Cost DSSC by Using Carbon-Ink From Inkjet Printer and Its Improvement Efficiency by Depositing Metal Bridge Between Titanium Dioxide Particles
,” ASME J. Sol. Energy Eng.
, 136
(4
), p. 044504
.74.
Park
, J.-I.
, Lee
, G.-Y.
, Yang
, J.
, Kim
, C.-S.
, and Ahn
, S.-H.
, 2016
, “Flexible Ceramic-Elastomer Composite Piezoelectric Energy Harvester Fabricated by Additive Manufacturing
,” J. Compos. Mater.
, 50
(12
), pp. 1573
–1579
.75.
Braam
, K. T.
, Volkman
, S. K.
, and Subramanian
, V.
, 2012
, “Characterization and Optimization of a Printed, Primary Silver–Zinc Battery
,” J. Power Sources
, 199
(0), pp. 367
–372
.76.
Nguyen
, T. H.
, Fraiwan
, A.
, and Choi
, S.
, 2014
, “Paper-Based Batteries: A Review
,” Biosens. Bioelectron.
, 54
(0), pp. 640
–649
.77.
Zhu
, C.
, Han
, T. Y.-J.
, Duoss
, E. B.
, Golobic
, A. M.
, Kuntz
, J. D.
, Spadaccini
, C. M.
, and Worsley
, M. A.
, 2015
, “Highly Compressible 3D Periodic Graphene Aerogel Microlattices
,” Nat. Commun.
, 6
, p. 6962
.78.
Sun
, K.
, Wei
, T.
, Ahn
, B. Y.
, Seo
, J.
, Dillon
, S.
, and Lewis
, J. A.
, 2013
, “3D Printing of Interdigitated Li-Ion Microbattery Architectures
,” Adv. Mater.
, 25
(33
), pp. 4539
–4543
.79.
Fuller
, S. B.
, Wilhelm
, E. J.
, and Jacobson
, J. M.
, 2002
, “Ink-Jet Printed Nanoparticle Microelectromechanical Systems
,” J. Microelectromech. Syst.
, 11
(1
), pp. 54
–60
.80.
Vaezi
, M.
, Seitz
, H.
, and Yang
, S.
, 2013
, “A Review on 3D Micro-Additive Manufacturing Technologies
,” Int. J. Adv. Manuf. Technol.
, 67
(5–8
), pp. 1721
–1754
.81.
Comina
, G.
, Suska
, A.
, and Filippini
, D.
, 2014
, “PDMS Lab-on-a-Chip Fabrication Using 3D Printed Templates
,” Lab Chip
, 14
(2
), pp. 424
–430
.82.
Comina
, G.
, Suska
, A.
, and Filippini
, D.
, 2014
, “Low Cost Lab-on-a-Chip Prototyping With a Consumer Grade 3D Printer
,” Lab Chip
, 14
(16
), pp. 2978
–2982
.83.
Kitson
, P. J.
, Rosnes
, M. H.
, Sans
, V.
, Dragone
, V.
, and Cronin
, L.
, 2012
, “Configurable 3D-Printed Millifluidic and Microfluidic ‘Lab on a Chip’ Reactionware Devices
,” Lab Chip
, 12
(18
), pp. 3267
–3271
.84.
Pabst
, O.
, Perelaer
, J.
, Beckert
, E.
, Schubert
, U. S.
, Eberhardt
, R.
, and Tünnermann
, A.
, 2013
, “All Inkjet-Printed Piezoelectric Polymer Actuators: Characterization and Applications for Micropumps in Lab-on-a-Chip Systems
,” Org. Electron.
, 14
(12
), pp. 3423
–3429
.85.
Farooqui
, M. F.
, Claudel
, C.
, and Shamim
, A.
, 2014
, “An Inkjet-Printed Buoyant 3-D Lagrangian Sensor for Real-Time Flood Monitoring
,” IEEE Trans. Antennas Propag.
, 62
(6
), pp. 3354
–3359
.86.
Ishiguro
, Y.
, and Poupyrev
, I.
, 2014
, “3D Printed Interactive Speakers
,” SIGCHI Conference on Human Factors in Computing Systems
, ACM, Toronto, ON, Canada, pp. 1733
–1742
.87.
Maeda
, R.
, Tsaur
, J. J.
, Lee
, S. H.
, and Ichiki
, M.
, 2005
, “Microactuators Based on Thin Films
,” Electroceramic-Based MEMS
, N.
Setter
, ed., Springer
, New York
, pp. 19
–35
.88.
Koray Akdogan
, E.
, Allahverdi
, M.
, and Safari
, A.
, 2005
, “Piezoelectric Composites for Sensor and Actuator Applications
,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control
, 52
(5
), pp. 746
–775
.89.
Glasschroeder
, J.
, Prager
, E.
, and Zaeh
, M. F.
, 2015
, “Powder-Bed-Based 3D-Printing of Function Integrated Parts
,” Rapid Prototyping J.
, 21
(2
), pp. 207
–215
.90.
Roberson
, D.
, Shemelya
, C. M.
, MacDonald
, E.
, and Wicker
, R.
, 2015
, “Expanding the Applicability of FDM-Type Technologies Through Materials Development
,” Rapid Prototyping J.
, 21
(2
), pp. 137
–143
.91.
Graphene 3D Lab
, 2015
, “Conductive Graphene Filament
,” http://www.blackmagic3d.com/product-p/grphn-175.htm92.
Schulz
, S.
, Ltkebohle
, I.
, and Wachsmuth
, S.
, “An Affordable, 3D-Printable Camera Eye With Two Active Degrees of Freedom for an Anthropomorphic Robot
,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp. 764
–771
.93.
Meisel
, N. A.
, Elliott
, A. M.
, and Williams
, C. B.
, 2015
, “A Procedure for Creating Actuated Joints Via Embedding Shape Memory Alloys in PolyJet 3D Printing
,” J. Intell. Mater. Syst. Struct.
, 26
(12
), pp. 1498
–1512
.94.
Stiltner
, L.
, Elliott
, A.
, and Williams
, C.
, 2011
, “A Method for Creating Actuated Joints Via Fiber Embedding in a Polyjet 3D Printing Process
,” 22nd Annual International Solid Freeform Fabrication Symposium
, pp. 583
–592
.95.
Ma
, R. R.
, Odhner
, L. U.
, and Dollar
, A. M.
, 2013
, “A Modular, Open-Source 3D Printed Underactuated Hand
,” 2013 IEEE International Conference on Robotics and Automation (ICRA)
, pp. 2737
–2743
.96.
Umedachi
, T.
, Vikas
, V.
, and Trimmer
, B. A.
, 2013
, “Highly Deformable 3-D Printed Soft Robot Generating Inching and Crawling Locomotions With Variable Friction Legs
,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp. 4590
–4595
.97.
Cohen
, E.
, Vikas
, V.
, Trimmer
, B.
, and McCarthy
, S.
, “Design Methodologies for Soft-Material Robots Through Additive Manufacturing, From Prototyping to Locomotion
,” ASME
Paper No. DETC2015-47507.98.
Xiang Gu
, G.
, Su
, I.
, Sharma
, S.
, Voros
, J. L.
, Qin
, Z.
, and Buehler
, M. J.
, 2016
, “Three-Dimensional-Printing of Bio-Inspired Composites
,” ASME J. Biomech. Eng.
, 138
(2
), p. 021006
.99.
MacDonald
, E.
, Salas
, R.
, Espalin
, D.
, Perez
, M.
, Aguilera
, E.
, Muse
, D.
, and Wicker
, R. B.
, 2014
, “3D Printing for the Rapid Prototyping of Structural Electronics
,” IEEE Access
, 2
, pp. 234
–242
.100.
Mayer
, D.
, Stoffregen
, H. A.
, Heuss
, O.
, Thiel
, J.
, Abele
, E.
, and Melz
, T.
, 2016
, “Additive Manufacturing of Active Struts for Piezoelectric Shunt Damping
,” J. Intell. Mater. Syst. Struct.
, 27
, pp. 743
–754
.101.
Malone
, E.
, and Lipson
, H.
, 2006
, “Freeform Fabrication of Ionomeric Polymer-Metal Composite Actuators
,” Rapid Prototyping J.
, 12
(5
), pp. 244
–253
.102.
Carrico
, J. D.
, Traeden
, N. W.
, Aureli
, M.
, and Leang
, K. K.
, 2015
, “Fused Filament Additive Manufacturing of Ionic Polymer-Metal Composite Soft Active 3D Structures
,” ASME
Paper No. SMASIS2015-8895.103.
Palmer
, J. A.
, Jokiel
, B.
, Nordquist
, C. D.
, Kast
, B. A.
, Atwood
, C. J.
, Grant
, E.
, Livingston
, F. J.
, Medina
, F.
, and Wicker
, R. B.
, 2006
, “Mesoscale RF Relay Enabled by Integrated Rapid Manufacturing
,” Rapid Prototyping J.
, 12
(3
), pp. 148
–155
.104.
Eun
, K.
, Chon
, M.-W.
, Yoo
, T.-H.
, Song
, Y.-W.
, and Choa
, S.-H.
, 2015
, “Electromechanical Properties of Printed Copper Ink Film Using a White Flash Light Annealing Process for Flexible Electronics
,” Microelectron. Reliab.
, 55
(5
), pp. 838
–845
.105.
Tormene
, P.
, Bartolo
, M.
, De Nunzio
, A. M.
, Fecchio
, F.
, Quaglini
, S.
, Tassorelli
, C.
, and Sandrini
, G.
, 2012
, “Estimation of Human Trunk Movements by Wearable Strain Sensors and Improvement of Sensor's Placement on Intelligent Biomedical Clothes
,” Biomed. Eng. Online
, 11
(1
), pp. 95
–95
.106.
Kim
, K. J.
, and Shahinpoor
, M.
, 2002
, “A Novel Method of Manufacturing Three-Dimensional Ionic Polymer–Metal Composites (IPMCS) Biomimetic Sensors, Actuators and Artificial Muscles
,” Polymer
, 43
(3
), pp. 797
–802
.107.
Vatani
, M.
, Engeberg
, E. D.
, and Choi
, J.-W.
, 2013
, “Hybrid Additive Manufacturing of 3D Compliant Tactile Sensors
,” ASME
Paper No. SMASIS2015-8895.108.
Madden
, K. E.
, and Deshpande
, A. D.
, 2015
, “On Integration of Additive Manufacturing During the Design and Development of a Rehabilitation Robot: A Case Study
,” ASME J. Mech. Des.
, 137
(11
), p. 111417
.109.
Enoch
, A.
, and Vijayakumar
, S.
, 2015
, “Rapid Manufacture of Novel Variable Impedance Robots
,” ASME J. Mech. Rob.
, 8
(1
), p. 011003
.Copyright © 2017 by ASME
You do not currently have access to this content.