Cellular structures are promising candidates for additive manufacturing (AM) due to their lower material and energy consumption. In this work, an efficient method is proposed for optimizing the topology of variable-density cellular structures to be fabricated by certain AM process. The method gains accuracy by relating the cellular structure's microstructure to continuous micromechanics models and achieves efficiency through conducting continuum topology optimization at macroscopic scale. The explicit cellular structure is then finally reconstructed by mapping the optimized continuous parameters (e.g., density) to cell structural parameters (e.g., strut diameter). The proposed method is validated by both finite element analysis and experimental tests on specimens manufactured by stereolithography.

References

1.
Gibson
,
L. J.
,
Ashby
,
M. F.
, and
Harley
,
B. A.
,
2010
, Cellular Materials in Nature and Medicine, Cambridge University, Cambridge, UK.
2.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
, Cellular Solids: Structure and Properties, Cambridge University, Cambridge, UK.
3.
Banhart
,
J.
,
2001
, “
Manufacture, Characterisation and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
(
6
), pp.
559
632
.10.1016/S0079-6425(00)00002-5
4.
Lu
,
T. J.
,
Hess
,
A.
, and
Ashby
,
M.
,
1999
, “
Sound Absorption in Metallic Foams
,”
J. Appl. Phys.
,
85
(
11
), pp.
7528
7539
.10.1063/1.370550
5.
Harte
,
A.-M.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2000
, “
Sandwich Panel Design Using Aluminum Alloy Foam
,”
Adv. Eng. Mater.
,
2
(
4
), pp.
219
222
.10.1002/(SICI)1527-2648(200004)2:4<219::AID-ADEM219>3.0.CO;2-#
6.
Hohe
,
J.
, and
Becker
,
W.
,
2002
, “
Effective Stress–Strain Relations for Two-Dimensional Cellular Sandwich Cores: Homogenization, Material Models, and Properties
,”
ASME Appl. Mech. Rev.
,
55
(
1
), pp.
61
87
.10.1115/1.1425394
7.
Pritz
,
T.
,
1994
, “
Dynamic Young's Modulus and Loss Factor of Plastic Foams for Impact Sound Isolation
,”
J. Sound Vib.
,
178
(
3
), pp.
315
322
.10.1006/jsvi.1994.1488
8.
Yilbas
,
B. S.
,
Akhtar
,
S.
, and
Keles
,
O.
,
2013
, “
Laser Cutting of Aluminum Foam: Experimental and Model Studies
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051018
.10.1115/1.4025009
9.
Strano
,
M.
,
2011
, “
A New FEM Approach for Simulation of Metal Foam Filled Tubes
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061003
.10.1115/1.4005354
10.
Nebosky
,
P. S.
, and
Schmid
,
S. R.
,
2011
, “
Formability of Porous Tantalum Sheet-Metal
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061006
.10.1115/1.4005353
11.
Gibson
,
L.
,
2000
, “
Mechanical Behavior of Metallic Foams
,”
Annu. Rev. Mater. Sci.
,
30
(
1
), pp.
191
227
.10.1146/annurev.matsci.30.1.191
12.
Christensen
,
R.
,
2000
, “
Mechanics of Cellular and Other Low-Density Materials
,”
Int. J. Solids Struct.
,
37
(
1
), pp.
93
104
.10.1016/S0020-7683(99)00080-3
13.
Lopatnikov
,
S. L.
,
Gama
,
B. A.
,
Jahirul Haque
,
M.
,
Krauthauser
,
C.
,
Gillespie
,
J. W.
, Jr.
,
Guden
,
M.
, and
Hall
,
I. W.
,
2003
, “
Dynamics of Metal Foam Deformation During Taylor Cylinder–Hopkinson Bar Impact Experiment
,”
Compos. Struct.
,
61
(
1
), pp.
61
71
.10.1016/S0263-8223(03)00039-4
14.
Elnasri
,
I.
,
Pattofatto
,
S.
,
Zhao
,
H.
,
Tsitsiris
,
H.
,
Hild
,
F.
, and
Girard
,
Y.
,
2007
, “
Shock Enhancement of Cellular Structures Under Impact Loading: Part I Experiments
,”
J. Mech. Phys. Solids
,
55
(
12
), pp.
2652
2671
.10.1016/j.jmps.2007.04.005
15.
Golovin
,
I.
, and
Sinning
,
H.-R.
,
2003
, “
Damping in Some Cellular Metallic Materials
,”
J. Alloys Compd.
,
355
(
1
), pp.
2
9
.10.1016/S0925-8388(03)00241-X
16.
Banhart
,
J.
,
Baumeister
,
J.
, and
Weber
,
M.
,
1996
, “
Damping Properties of Aluminium Foams
,”
Mater. Sci. Eng. A
,
205
(
1
), pp.
221
228
.10.1016/0921-5093(95)09973-5
17.
Andrews
,
E.
, and
Gibson
,
L.
,
2001
, “
The Influence of Cracks, Notches and Holes on the Tensile Strength of Cellular Solids
,”
Acta Mater.
,
49
(
15
), pp.
2975
2979
.10.1016/S1359-6454(01)00203-8
18.
Fleck
,
N.
,
Deshpande
,
V.
, and
Ashby
,
M.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A
,
466
(
2121
), pp.
2495
2516
.10.1098/rspa.2010.0215
19.
Ashby
,
M. F.
, and
Medalist
,
R. M.
,
1983
, “
The Mechanical Properties of Cellular Solids
,”
Metall. Trans. A
,
14
(
9
), pp.
1755
1769
.10.1007/BF02645546
20.
Evans
,
A.
,
Hutchinson
,
J.
,
Fleck
,
N.
,
Ashby
,
M.
, and
Wadley
,
H.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3
), pp.
309
327
.10.1016/S0079-6425(00)00016-5
21.
Wadley
,
H. N.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Philos. Trans. R. Soc. A
,
364
(
1838
), pp.
31
68
.10.1098/rsta.2005.1697
22.
Evans
,
A. G.
,
Hutchinson
,
J.
, and
Ashby
,
M.
,
1998
, “
Multifunctionality of Cellular Metal Systems
,”
Prog. Mater. Sci.
,
43
(
3
), pp.
171
221
.10.1016/S0079-6425(98)00004-8
23.
To
,
A.
,
Tao
,
J.
,
Kirca
,
M.
, and
Schalk
,
L.
,
2011
, “
Ligament and Joint Sizes Govern Softening in Nanoporous Aluminum
,”
Appl. Phys. Lett.
,
98
(
5
), p.
051903
.10.1063/1.3549858
24.
Giri
,
A.
,
Tao
,
J.
,
Wang
,
L.
,
Kirca
,
M.
, and
To
,
A. C.
,
2013
, “
Compressive Behavior and Deformation Mechanism of Nanoporous Open-Cell Foam With Ultrathin Ligaments
,”
J. Nanomech. Micromech.
,
4
(
2
), p. A4013012.10.1061/(ASCE)NM.2153-5477.0000079
25.
Chmielus
,
M.
,
Zhang
,
X.
,
Witherspoon
,
C.
,
Dunand
,
D.
, and
Müllner
,
P.
,
2009
, “
Giant Magnetic-Field-Induced Strains in Polycrystalline Ni–Mn–Ga Foams
,”
Nat. Mater.
,
8
(
11
), pp.
863
866
.10.1038/nmat2527
26.
Boonyongmaneerat
,
Y.
,
Chmielus
,
M.
,
Dunand
,
D. C.
, and
Müllner
,
P.
,
2007
, “
Increasing Magnetoplasticity in Polycrystalline Ni–Mn–Ga by Reducing Internal Constraints Through Porosity
,”
Phys. Rev. Lett.
,
99
(
24
), p.
247201
.10.1103/PhysRevLett.99.247201
27.
Wadley
,
H. N.
,
2002
, “
Cellular Metals Manufacturing
,”
Adv. Eng. Mater.
,
4
(
10
), pp.
726
733
.10.1002/1527-2648(20021014)4:10<726::AID-ADEM726>3.0.CO;2-Y
28.
Sundarram
,
S. S.
,
Jiang
,
W.
, and
Li
,
W.
,
2014
, “
Fabrication of Small Pore-Size Nickel Foams Using Electroless Plating of Solid-State Foamed Immiscible Polymer Blends
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021002
.10.1115/1.4025418
29.
Barletta
,
M.
,
Gisario
,
A.
,
Guarino
,
S.
, and
Rubino
,
G.
,
2009
, “
Production of Open Cell Aluminum Foams by Using the Dissolution and Sintering Process (DSP)
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041009
.10.1115/1.3159044
30.
Burblies
,
A.
, and
Busse
,
M.
, 2006, “
Computer Based Porosity Design by Multi Phase Topology Optimization
,”
AIP Conference Proceedings
,
973
(15–18), pp. 285–290.
31.
Harrysson
,
O. L.
,
Cansizoglu
,
O.
,
Marcellin-Little
,
D. J.
,
Cormier
,
D. R.
, and
West
, II,
H. A.
,
2008
, “
Direct Metal Fabrication of Titanium Implants With Tailored Materials and Mechanical Properties Using Electron Beam Melting Technology
,”
Mater. Sci. Eng. C
,
28
(
3
), pp.
366
373
.10.1016/j.msec.2007.04.022
32.
Murr
,
L.
,
Gaytan
,
S.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
Machado
,
B.
,
Hernandez
,
D.
,
Martinez
,
L.
,
Lopez
,
M.
, and
Wicker
,
R.
,
2010
, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays
,”
Philos. Trans. R. Soc. A
,
368
(
1917
), pp.
1999
2032
.10.1098/rsta.2010.0010
33.
Nguyen
,
J.
,
Park
,
S.-i.
, and
Rosen
,
D.
,
2013
, “
Heuristic Optimization Method for Cellular Structure Design of Light Weight Components
,”
Int. J. Precis. Eng. Manuf.
,
14
(
6
), pp.
1071
1078
.10.1007/s12541-013-0144-5
34.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.10.1007/978-1-4419-1120-9
35.
Kruth
,
J.-P.
,
Leu
,
M.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann. Manuf. Technol.
,
47
(
2
), pp.
525
540
.10.1016/S0007-8506(07)63240-5
36.
Wohlers
,
T.
,
2011
,
Wohlers Report 2011: Additive Manufacturing and 3D Printing, State of the lndustry
,
Wohlers Associates
,
Ft. Collins, CO
.
37.
Scott
,
J.
,
Gupta
,
N.
,
Weber
,
C. L.
,
Newsome
,
S.
,
Wohlers
,
T.
, and
Caffrey
,
T.
,
2012
,
Additive Manufacturing: Status and Opportunities
,
Science and Technology Policy Institute
,
Washington, DC
, pp.
1
29
.
38.
Conley
,
J.
, and
Marcus
,
H.
,
1997
, “
Rapid Prototyping and Solid Free Form Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4B
), pp.
811
816
.10.1115/1.2836828
39.
Beyer
,
C.
, “
Additive Manufacturing—Implications of a Breakthrough Technology
,”
ASME J. Manuf. Sci. Eng.
(to be published).10.1115/1.4028599
40.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.10.1115/1.4024040
41.
Gu
,
D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.10.1179/1743280411Y.0000000014
42.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Martinez
,
E.
,
Hernandez
,
J.
,
Amato
,
K. N.
,
Shindo
,
P. W.
,
Medina
,
F. R.
, and
Wicker
,
R. B.
,
2012
, “
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
1
14
.10.1016/S1005-0302(12)60016-4
43.
Bártolo
,
P. J.
,
2011
,
Stereolithography: Materials, Processes and Applications
,
Springer
,
New York
.
44.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
45.
Schultz
,
B.
, and
Rohatgi
,
P.
,
2014
, “
Laser Engineered Net Shaping Process for 316L/15% Nickel Coated Titanium Carbide Metal Matrix Composite
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051007
.10.1115/1.4027758
46.
Kruth
,
J. P.
,
Leu
,
M.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann. Manuf. Technol.
,
47
(
2
), pp.
525
540
.10.1016/S0007-8506(07)63240-5
47.
Luo
,
J.
,
Pan
,
H.
, and
Kinzel
,
E.
, “
Additive Manufacturing of Glass
,”
ASME J. Manuf. Sci. Eng.
(to be published).10.1115/1.4028531
48.
Dimas
,
L. S.
,
Bratzel
,
G. H.
,
Eylon
,
I.
, and
Buehler
,
M. J.
,
2013
, “
Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D Printing, and Testing
,”
Adv. Funct. Mater.
,
23
(
36
), pp.
4629
4638
.10.1002/adfm.201300215
49.
Li
,
Y.
,
Kaynia
,
N.
,
Rudykh
,
S.
, and
Boyce
,
M. C.
,
2013
, “
Wrinkling of Interfacial Layers in Stratified Composites
,”
Adv. Eng. Mater.
,
15
(
10
), pp.
921
926
.10.1002/adem.201300147
50.
Gaytan
,
S.
,
Murr
,
L.
,
Martinez
,
E.
,
Martinez
,
J.
,
Machado
,
B.
,
Ramirez
,
D.
,
Medina
,
F.
,
Collins
,
S.
, and
Wicker
,
R.
,
2010
, “
Comparison of Microstructures and Mechanical Properties for Solid and Mesh Cobalt-Base Alloy Prototypes Fabricated by Electron Beam Melting
,”
Metall. Mater. Trans. A
,
41
(
12
), pp.
3216
3227
.10.1007/s11661-010-0388-y
51.
Cansizoglu
,
O.
,
Harrysson
,
O.
,
Cormier
,
D.
,
West
,
H.
, and
Mahale
,
T.
,
2008
, “
Properties of Ti–6Al–4V Non-Stochastic Lattice Structures Fabricated Via Electron Beam Melting
,”
Mater. Sci. Eng. A
,
492
(
1
), pp.
468
474
.10.1016/j.msea.2008.04.002
52.
Heinl
,
P.
,
Müller
,
L.
,
Körner
,
C.
,
Singer
,
R. F.
, and
Müller
,
F. A.
,
2008
, “
Cellular Ti–6Al–4V Structures With Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting
,”
Acta Biomater.
,
4
(
5
), pp.
1536
1544
.10.1016/j.actbio.2008.03.013
53.
Parthasarathy
,
J.
,
Starly
,
B.
, and
Raman
,
S.
,
2011
, “
A Design for the Additive Manufacture of Functionally Graded Porous Structures With Tailored Mechanical Properties for Biomedical Applications
,”
J. Manuf. Processes
,
13
(
2
), pp.
160
170
.10.1016/j.jmapro.2011.01.004
54.
Brooks
,
W.
,
Sutcliffe
,
C.
,
Cantwell
,
W.
,
Fox
,
P.
,
Todd
,
J.
, and
Mines
,
R.
, 2005, “
Rapid Design and Manufacture of Ultralight Cellular Materials
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
, pp. 231–241.
55.
Winter
,
R.
,
Cotton
,
M.
,
Harris
,
E.
,
Chapman
,
D.
,
Eakins
,
D.
, and
McShane
,
G.
,
2013
, “
Plate-Impact Loading of Cellular Structures Formed by Selective Laser Melting
,”
Structures Under Shock and Impact XII
, Vol.
126
,
WIT Press
, Southampton, UK, pp.
145
156
.10.2495/SU120131
56.
Cerardi
,
A.
,
Caneri
,
M.
,
Meneghello
,
R.
,
Concheri
,
G.
, and
Ricotta
,
M.
,
2013
, “
Mechanical Characterization of Polyamide Cellular Structures Fabricated Using Selective Laser Sintering Technologies
,”
Mater. Des.
,
46
, pp.
910
915
.10.1016/j.matdes.2012.11.042
57.
Hazlehurst
,
K.
,
Wang
,
C. J.
, and
Stanford
,
M.
,
2013
, “
Evaluation of the Stiffness Characteristics of Square Pore CoCrMo Cellular Structures Manufactured Using Laser Melting Technology for Potential Orthopaedic Applications
,”
Mater. Des.
,
51
, pp.
949
955
.10.1016/j.matdes.2013.05.009
58.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
,
Young
,
P.
, and
Raymont
,
D.
,
2014
, “
Advanced Lightweight 316L Stainless Steel Cellular Lattice Structures Fabricated via Selective Laser Melting
,”
Mater. Des.
,
55
, pp.
533
541
.10.1016/j.matdes.2013.10.027
59.
Tsopanos
,
S.
,
Mines
,
R.
,
McKown
,
S.
,
Shen
,
Y.
,
Cantwell
,
W.
,
Brooks
,
W.
, and
Sutcliffe
,
C.
,
2010
, “
The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Microlattice Structures
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041011
.10.1115/1.4001743
60.
Chu
,
C.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2008
, “
Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
5
(
5
), pp.
686
696
.10.3722/cadaps.2008.686-696
61.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
4
(
5
), pp.
585
594
.10.1080/16864360.2007.10738493
62.
Williams
,
C. B.
,
Cochran
,
J. K.
, and
Rosen
,
D. W.
,
2011
, “
Additive Manufacturing of Metallic Cellular Materials via Three-Dimensional Printing
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
231
239
.10.1007/s00170-010-2812-2
63.
Gaurav
,
G.
, and
Carolyn
,
S.
,
2008
, “
Topology Design of Compliant Cellular Structures With Contact-Enabled, Graded Stiffness
,”
AIAA
Paper No. 2008-2262. 10.2514/6.2008-2262
64.
Rodrigues
,
H.
,
2007
, “
Topology Optimization of Structures: Applications in the Simulation and Design of Cellular Materials
,”
Computational Methods in Engineering & Science
,
Springer
,
Berlin, Germany
, pp.
101
112
.10.1007/978-3-540-48260-4_10
65.
Sigmund
,
O.
,
2000
, “
Topology Optimization: A Tool for the Tailoring of Structures and Materials
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
358
(
1765
), pp.
211
227
.10.1098/rsta.2000.0528
66.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
, 2011, “
Topology Optimization for Additive Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, pp. 348–362.
68.
Seepersad
,
C. C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
,
2008
, “
Multifunctional Topology Design of Cellular Material Structures
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031404
.10.1115/1.2829876
69.
Li
,
S.
, and
Wang
,
G.
,
2008
,
Introduction to Micromechanics and Nanomechanics
,
World Scientific
,
Singapore
.
70.
Simone
,
A.
, and
Gibson
,
L.
,
1998
, “
Effects of Solid Distribution on the Stiffness and Strength of Metallic Foams
,”
Acta Mater.
,
46
(
6
), pp.
2139
2150
.10.1016/S1359-6454(97)00421-7
71.
Hearmon
,
R.
,
1961
,
An Introduction to Applied Anisotropic Elasticity
,
Oxford University
,
London, UK
.
72.
Nye
,
J. F.
,
1985
,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
,
Oxford University
,
Oxford, UK
.
73.
Bendsoe
,
M. P.
,
2003
, Topology Optimization: Theory, Methods and Applications, Springer, Berlin, Germany.
74.
Huang
,
X.
, and
Xie
,
M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
Wiley
,
Chichester, UK
.
75.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
.10.1115/1.1388075
76.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.10.1007/s004190050248
77.
Hughes
,
T. J. R.
,
2000
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover
,
New York
.
78.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in MATLAB Using 88 Lines of Code
,”
Struct. Multidiscip. Optim.
,
43
(
1
), pp.
1
16
.10.1007/s00158-010-0594-7
79.
Zhou
,
M.
,
Shyy
,
Y.
, and
Thomas
,
H.
,
2001
, “
Checkerboard and Minimum Member Size Control in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
152
158
.10.1007/s001580050179
You do not currently have access to this content.