A piezoelectrically driven, submicron XY-positioning stage with multiprocess capability is developed and then integrated into two micro∕nanoscale manufacturing processes to improve their performance. The design is based on the HexFlex™ mechanism but is modified to improve structural robustness using a combination of factorial design, linear programming, and finite element analysis. Performance analysis reveals travel ranges of 16μm (X-axis) and 8μm (Y-axis), positioning accuracies of 87nm (X-axis) and 92nm (Y-axis), and overall stiffnesses of 32Nμm (X-axis) and 36Nμm (Y-axis). A comparison of microfluidic channels manufactured with a micromachine tool (mMT) alone and with the stage stacked on the mMT shows an improvement in feature accuracy from 870nmto170nm. The stage is integrated with an electrochemical deposition setup. Nanowire structures with sharp angles are fabricated. The diameter of these nanowires shows an improvement in uniformity by decreasing the standard deviation of diameter variation from 2.088μmto0.009μm.

1.
Yao
,
Q.
,
Dong
,
J.
, and
Ferreira
,
P. M.
, 2007, “
Design, Analysis, Fabrication and Testing of a Parallel-Kinematic Micropositioning XY Stage
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
6
), pp.
946
961
.
2.
Chang
,
S. H.
,
Tseng
,
C. K.
, and
Chien
,
H. C.
, 1999, “
An Ultra Precision XYθz Piezo-Micropositioner; Part I: Design and Analysis
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
46
(
4
), pp.
897
905
.
3.
Chang
,
S. H.
,
Tseng
,
C. K.
, and
Chien
,
H. C.
, 1999, “
An Ultra Precision XYθz Piezo-Micropositioner; Part II: Experiment and Performance
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
46
(
4
), pp.
906
912
.
4.
Culpepper
,
M. L.
, and
Anderson
,
G.
, 2004, “
Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism
,”
Precis. Eng.
0141-6359,
28
(
4
), pp.
469
482
.
6.
Jun
,
M. B. G.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2006, “
Investigation of the Dynamics of Microend Milling—Part II: Model Validation and Interpretation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
4
), pp.
901
912
.
7.
Jun
,
M. B. G.
,
Joshi
,
S. S.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2008, “
An Experimental Evaluation of an Atomization-Based Cutting Fluid Application System for Micromachining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
3
), in press.
8.
Paros
,
J. M.
, and
Weisbord
,
L.
, 1965, “
How to Design Flexure Hinges
,”
Mach. Des.
0024-9114,
37
(
27
), pp.
151
156
.
9.
Hart
,
A. J.
,
Slocum
,
A.
, and
Sutin
,
J.
, 2004, “
Kinematic Coupling Interchangeability
,”
Precis. Eng.
0141-6359,
28
(
1
), pp.
1
15
.
10.
Salapaka
,
S.
,
Sebastian
,
A.
,
Cleveland
,
J. P.
, and
Salapaka
,
M. V.
, 2002, “
High Bandwidth Nano-Positioner: A Robust Control Approach
,”
Rev. Sci. Instrum.
0034-6748,
73
(
9
), pp.
3232
3241
.
11.
Salapaka
,
S.
, and
Sebastian
,
A.
, 2003, “
Control of the Nanopositioning Devices
,”
Proceedings of the 42nd IEEE Conference on Decision and Control
, pp.
2644
2649
.
12.
Changhai
,
R.
, and
Lining
,
S.
, 2005, “
Hysteresis and Creep Compensation for Piezoelectric Actuator in Open-Loop Operation
,”
Sens. Actuators, A
0924-4247,
122
(
1
), pp.
124
130
.
13.
Yeh
,
T. J.
,
Lu
,
S. W.
, and
Wu
,
T. Y.
, 2006, “
Modeling and Identification of Hysteresis in Piezoelectric Actuators
,”
J. Dyn. Syst., Meas., Control
0022-0434,
128
(
2
), pp.
189
196
.
14.
Honegger
,
A. E.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2006, “
A Hybrid Methodology for Kinematic Calibration of Micro∕Meso-Scale Machine Tools (mMTs)
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
513
522
.
16.
Khapaev
,
M. M.
,
Kidiyarova-Shevchenko
,
A. Y.
,
Magnelind
,
P.
, and
Kupriyanov
,
M. Y
, 2001, “
3D-MLSI: Software Package for Inductance Calculation in Multilayer Superconducting Integrated Circuits
,”
IEEE Trans. Appl. Supercond.
1051-8223,
11
(
1
), pp.
1090
1093
.
17.
Fasching
,
R. J.
,
Tao
,
Y.
,
Hammerick
,
K.
, and
Prinz
,
F. B.
, 2003, “
A Pencil Probe System for Electrochemical Analysis and Modification in Nanometer Dimensions
,”
Proc. SPIE
0277-786X,
5116
(
1
), pp.
128
135
.
18.
Hanein
,
Y.
,
Schabmueller
,
C. G. J.
,
Holman
,
G.
,
Lucke
,
P.
,
Denton
,
D. D.
, and
Bohringer
,
K. F.
, 2003, “
High-Aspect Ratio Submicrometer Needles for Intracellular Applications
,”
J. Micromech. Microeng.
0960-1317,
13
(
4
), pp.
S91
S95
.
19.
Tao
,
Y.
,
Fasching
,
R. J.
,
Prinz
, and
F. B.
, 2004, “
Ultrasharp High-Aspect-Ratio Probe Array for SECM and AFM Analysis
,”
Proc. SPIE
0277-786X,
5389
(
1
), pp.
431
442
.
20.
Suryavanshi
,
A. P.
, and
Yu
,
M. F.
, 2006, “
Probe-Based Electrochemical Fabrication of Freestanding Cu Nanowire Array
,”
Appl. Phys. Lett.
0003-6951,
88
(
8
), p.
083103
.
21.
Suryavanshi
,
A. P.
, and
Yu
,
M. F.
, 2007, “
Electrochemical Fountain Pen Nanofabrication of Vertically Grown Platinum Nanowires
,”
Nanotechnology
0957-4484,
18
(
10
), p.
105305
.
You do not currently have access to this content.