Abstract
In practice of caliber rolling, it is highly desirable to obtain optimal processing parameters to achieve the best quality in a short time. A sophisticated and faster simulation model of caliber rolling is proposed, and then a global optimal searching method—simulated annealing algorithm (SA)—is applied to find the optimal processing parameters of caliber rolling. The simulation model of caliber rolling in this paper was established by the back-propagation neural network (BPNN) model, which replaces the complex numerical analytical model, proposed in an earlier paper. This replacement improved the speed of simulation significantly.
1.
Shivpuri
, R.
, and Chou
, P. C.
, 1989, “A Comparative Study of Slab, Upper Bound and Finite Element Methods for Predicting Force and Torque in Cold Rolling
” Int. J. Mach. Tools Manuf.
0890-6955, 29
(3
), pp. 305
–322
.2.
Kennedy
, K. F.
, 1988, “An Approximate Three-Dimensional Metal Flow Analysis for Shape Rolling
,” J. Eng. Ind.
0022-0817, 110
, pp. 223
–231
.3.
Park
, J. J.
, and Oh
, S. I.
, 1990, “Application of Three Dimensional Finite Element Analysis to Shape Rolling Processes
,” J. Eng. Ind.
0022-0817, 112
, pp. 36
–46
.4.
Yoshimura
, K.
, 1997, “A Technique for Robust Design of Roll Passes for Consistent Rod Quality
,” Trans. NAMRI/SME
1047-3025, XXV
, pp. 55
–60
.5.
Kini
, S. D.
, and Shivpuri
, R.
, 1998, “Roll Pass Design Optimization Applying Fuzzy Reasoning Techniques
,” Trans. NAMRI/SME
1047-3025, XXVI
, pp. 79
–84
.6.
Kim
, D. H.
, Kim
, D. J.
, and Kim
, B. M.
, 1999, “The Application of Neural Networks and Statistical Methods to Process Design in Metal Forming Processes
,” Int. J. Adv. Manuf. Technol.
0268-3768, 15
, pp. 886
–894
.7.
Co
, D. C.
, Kim
, D. H.
, and Kim
, B. M.
, 1999, “Application of Artificial Neural Network and Taguchi Method to Preform Design in Metal Forming Considering Workability
,” Int. J. Mach. Tools Manuf.
0890-6955, 39
, pp. 771
–785
.8.
Hsiang
, S. H.
, and Lin
, S. L.
, 2001, “Application of 3D FEM-slab method to shape rolling
,” Int. J. Mech. Sci.
0020-7403, 43
, pp. 1155
–1177
.9.
Li
, G. J.
, and Kobayashi
, S.
, 1982, “Rigid-Plastic Finite-Element Analysis of Plane Strain Rolling
,” J. Eng. Ind.
0022-0817, 104
, pp. 55
–64
.10.
Tozawa
, Y.
, Nakamura
, M.
, and Ishikawa
, T.
, 1976, “Method of Three-Dimension Analysis and an Applied Example—Analytical Study on Three-Dimension Deformation in Strip Rolling I—
,” J. Jpn. Soc. Technol. Plast.
0038-1586, 17
(180
), pp. 37
–44
.11.
Chen
, C. C.
, and Kobayashi
, S.
, 1978, “Rigid Plastic Finite Element Analysis of Ring Compression
,” Application of Numerical Methods in Forming Processes
, ASME
, New York
, AMD-Vol. 28
, pp. 163
–174
.12.
Kennedy
, K. F.
, 1987, “A Method for Analyzing Spread, Elongation and Bulge in Flat Rolling
,” J. Eng. Ind.
0022-0817, 109
, pp. 248
–256
.13.
Altan
, T.
, and Boulger
, F. W.
, 1973, “Flow Stress of Metals and Its Application in Metal Forming Analyses
,” J. Eng. Ind.
0022-0817, 95
, pp. 1009
–1019
.14.
Altan
, T.
, Oh
, S. I.
, and Gegel
, H.
, 1983, Metal Forming Fundamentals and Applications
, American Society of Metals.15.
Lee
, C. H.
, and Altan
, T.
, 1972, “Influence of Flow Stress and Friction Upon Metal Flow in Upset Forging of Ring and Cylinders
,” J. Eng. Ind.
0022-0817, 94
, pp. 775
–782
.16.
Werbos
, P.
, 1974, “Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences
,” PhD thesis, Harvard, Cambridge, MA.17.
Parker
, D. B.
, 1985, “Learning Logic
,” Technical Report TR-47, Center for Computational Research in Economics and Management Science, MIT
, Cambridge, MA.18.
Rumelhart
, D. E.
, Hinton
, G. E.
, and Williams
, R. J.
, 1986, “Learning Internal Representation by Error Propagation
,” in Parallel Distributed Processing
, D. E.
Rumelhart
and McClelland
, eds., MIT, Press
, Cambridge, MA
, Vol. 1
, pp. 318
–362
.19.
Kim
, D. H.
, Kim
, D. J.
, and Kim
, B. M.
, 1999, “The Application of Neural Networks and Statistical Methods to Process Design in Metal Forming Processes
,” Int. J. Adv. Manuf. Technol.
0268-3768, 15
, pp. 886
–894
.20.
Jepsen
, D. W.
, and Gelatt
, C. D.
, Jr.,, 1983, “Macro Placement by Monte Carlo Annealing
,” Proceeding of IEEE International Conference on Computer Design
, Port Chester
, pp. 495
–498
.21.
Kirkpatrick
, S.
, Gelatt
, C. D.
, Jr., and Vecchi
, M. P.
, 1983, “Optimization by Simulated Annealing
,” Science
0036-8075, 220
, pp. 671
–680
.22.
ven Laarhoven
, P. J. M.
, and Aarts
, E. H. L.
, 1987, Simulated Annealing: Theory and Applications
, Reidel
, Dordrecht, Holland
.23.
Azencott
, R.
, 1992, Simulated Annealing: Parallelization Techniques
, Wiley
, New York
.24.
Su
, H.-Z.
, 1987, “Parameters Seeking in Simulated Annealing
,” M.S. dissertation, Department of Mechanical Engineering, National Taiwan University of Science and Technology.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.