Abstract

In practice of caliber rolling, it is highly desirable to obtain optimal processing parameters to achieve the best quality in a short time. A sophisticated and faster simulation model of caliber rolling is proposed, and then a global optimal searching method—simulated annealing algorithm (SA)—is applied to find the optimal processing parameters of caliber rolling. The simulation model of caliber rolling in this paper was established by the back-propagation neural network (BPNN) model, which replaces the complex numerical analytical model, proposed in an earlier paper. This replacement improved the speed of simulation significantly.

1.
Shivpuri
,
R.
, and
Chou
,
P. C.
, 1989, “
A Comparative Study of Slab, Upper Bound and Finite Element Methods for Predicting Force and Torque in Cold Rolling
Int. J. Mach. Tools Manuf.
0890-6955,
29
(
3
), pp.
305
322
.
2.
Kennedy
,
K. F.
, 1988, “
An Approximate Three-Dimensional Metal Flow Analysis for Shape Rolling
,”
J. Eng. Ind.
0022-0817,
110
, pp.
223
231
.
3.
Park
,
J. J.
, and
Oh
,
S. I.
, 1990, “
Application of Three Dimensional Finite Element Analysis to Shape Rolling Processes
,”
J. Eng. Ind.
0022-0817,
112
, pp.
36
46
.
4.
Yoshimura
,
K.
, 1997, “
A Technique for Robust Design of Roll Passes for Consistent Rod Quality
,”
Trans. NAMRI/SME
1047-3025,
XXV
, pp.
55
60
.
5.
Kini
,
S. D.
, and
Shivpuri
,
R.
, 1998, “
Roll Pass Design Optimization Applying Fuzzy Reasoning Techniques
,”
Trans. NAMRI/SME
1047-3025,
XXVI
, pp.
79
84
.
6.
Kim
,
D. H.
,
Kim
,
D. J.
, and
Kim
,
B. M.
, 1999, “
The Application of Neural Networks and Statistical Methods to Process Design in Metal Forming Processes
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
15
, pp.
886
894
.
7.
Co
,
D. C.
,
Kim
,
D. H.
, and
Kim
,
B. M.
, 1999, “
Application of Artificial Neural Network and Taguchi Method to Preform Design in Metal Forming Considering Workability
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
, pp.
771
785
.
8.
Hsiang
,
S. H.
, and
Lin
,
S. L.
, 2001, “
Application of 3D FEM-slab method to shape rolling
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
1155
1177
.
9.
Li
,
G. J.
, and
Kobayashi
,
S.
, 1982, “
Rigid-Plastic Finite-Element Analysis of Plane Strain Rolling
,”
J. Eng. Ind.
0022-0817,
104
, pp.
55
64
.
10.
Tozawa
,
Y.
,
Nakamura
,
M.
, and
Ishikawa
,
T.
, 1976, “
Method of Three-Dimension Analysis and an Applied Example—Analytical Study on Three-Dimension Deformation in Strip Rolling I—
,”
J. Jpn. Soc. Technol. Plast.
0038-1586,
17
(
180
), pp.
37
44
.
11.
Chen
,
C. C.
, and
Kobayashi
,
S.
, 1978, “
Rigid Plastic Finite Element Analysis of Ring Compression
,”
Application of Numerical Methods in Forming Processes
,
ASME
,
New York
, AMD-Vol.
28
, pp.
163
174
.
12.
Kennedy
,
K. F.
, 1987, “
A Method for Analyzing Spread, Elongation and Bulge in Flat Rolling
,”
J. Eng. Ind.
0022-0817,
109
, pp.
248
256
.
13.
Altan
,
T.
, and
Boulger
,
F. W.
, 1973, “
Flow Stress of Metals and Its Application in Metal Forming Analyses
,”
J. Eng. Ind.
0022-0817,
95
, pp.
1009
1019
.
14.
Altan
,
T.
,
Oh
,
S. I.
, and
Gegel
,
H.
, 1983,
Metal Forming Fundamentals and Applications
, American Society of Metals.
15.
Lee
,
C. H.
, and
Altan
,
T.
, 1972, “
Influence of Flow Stress and Friction Upon Metal Flow in Upset Forging of Ring and Cylinders
,”
J. Eng. Ind.
0022-0817,
94
, pp.
775
782
.
16.
Werbos
,
P.
, 1974, “
Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences
,” PhD thesis, Harvard, Cambridge, MA.
17.
Parker
,
D. B.
, 1985, “
Learning Logic
,” Technical Report TR-47,
Center for Computational Research in Economics and Management Science, MIT
, Cambridge, MA.
18.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
, 1986, “
Learning Internal Representation by Error Propagation
,” in
Parallel Distributed Processing
,
D. E.
Rumelhart
and
McClelland
, eds.,
MIT, Press
,
Cambridge, MA
, Vol.
1
, pp.
318
362
.
19.
Kim
,
D. H.
,
Kim
,
D. J.
, and
Kim
,
B. M.
, 1999, “
The Application of Neural Networks and Statistical Methods to Process Design in Metal Forming Processes
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
15
, pp.
886
894
.
20.
Jepsen
,
D. W.
, and
Gelatt
,
C. D.
, Jr.,
, 1983, “
Macro Placement by Monte Carlo Annealing
,”
Proceeding of IEEE International Conference on Computer Design
,
Port Chester
, pp.
495
498
.
21.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, Jr.
, and
Vecchi
,
M. P.
, 1983, “
Optimization by Simulated Annealing
,”
Science
0036-8075,
220
, pp.
671
680
.
22.
ven Laarhoven
,
P. J. M.
, and
Aarts
,
E. H. L.
, 1987,
Simulated Annealing: Theory and Applications
,
Reidel
,
Dordrecht, Holland
.
23.
Azencott
,
R.
, 1992,
Simulated Annealing: Parallelization Techniques
,
Wiley
,
New York
.
24.
Su
,
H.-Z.
, 1987, “
Parameters Seeking in Simulated Annealing
,” M.S. dissertation, Department of Mechanical Engineering, National Taiwan University of Science and Technology.
You do not currently have access to this content.