High-precision, noncontact dimensional inspection requires sensor standoff control due to the working range limitation posed by high-precision range sensors. Constant sensor standoff with the surface of the part is necessary to ensure accurate measurement. This paper presents a novel computer-aided design (CAD) independent approach to sensor standoff control called “fixtureless sensor standoff control (FSC),” which contrary to current methods does not require a fixture or manual intervention for registration. This approach to sensor standoff control will enable rapid, flexible, and high-precision inspection of freeform parts, thus catering to the needs of future manufacturing systems. In the FSC methodology, the sensor’s position for the next measurement is estimated based on immediate previous measurements. The method was implemented on a four-axis machine used to inspect turbine blades. Results from measurement of an example turbine blade showed the deviation from desired standoff to be significantly smaller than the working range of the sensor.

1.
Koren
,
Y.
,
Heisel
,
U.
,
Jovane
,
F.
,
Moriwaki
,
T.
,
Pritschow
,
G.
,
Ulsoy
,
G.
, and
Brussel
,
H. V.
, 1999, “
Reconfigurable Manufacturing Systems
,”
CIRP Ann.
0007-8506,
48
(
2
),
527
540
.
2.
Li
,
Y.
, and
Gu
,
P.
, 2004, “
Free-Form Suface Inspection Techniques—State of the Art Review
,”
Comput.-Aided Des.
0010-4485,
36
(
13
),
1395
1417
.
3.
Blais
,
F.
, 2004, “
A Review of 20Years of Range Sensor Development
,”
J. Electron. Imaging
1017-9909,
13
(
1
),
231
243
.
4.
Srivatsan
,
V.
,
Katz
,
R.
, and
Dutta
,
D.
, 2005, “
An In-Process Method for Controlling Sensor Standoff for Laser Range Measurement of Objects With Complex Surface Geometry
,”
Transactions of NAMRI/SME
, New York, NAMRC-33, May 24–27, Vol.
33
, pp.
517
524
.
5.
Chen
,
Y.
, and
Medioni
,
G.
, 1992, “
Object Modeling by Registration of Multiple Images
,”
Image Vis. Comput.
0262-8856,
10
(
3
),
145
155
.
6.
Vergeest
,
J. S. M.
,
Spanjaard
,
S.
,
Wang
,
C.
, and
Song
,
Y.
, 2003, “
Complex 3D Feature Registration Using a Marching Template
,”
The 11th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision’2003
, Plzen-Bory, Czech Republic, WSCG 2003, February 3–7.
7.
Li
,
X.
, and
Guskov
,
I.
, 2005, “
Multiscale Feature for Approximate Alignment of Point-Based Surfaces
,”
Proceedings of 3rd ACM Siggraph/Eurographics Symposium on Geometry Processing
,
Vienna, Austria
, July 4–6, pp.
217
226
.
8.
Zhu
,
L.
,
Barhak
,
J.
,
Srivatsan
,
V.
, and
Katz
,
R.
, “
Efficient Registration for Precision Inspection of Free-Form Surfaces
,” Journal of Advanced Manufacturing Technology (to be published).
9.
Li
,
Y.
, and
Gu
,
P.
, 2005, “
Feature-Based Alignment and Comparison Between Portion and Whole of Free-Form Surfaces
,”
CIRP Ann.
0007-8506,
54
(
1
), pp.
135
138
.
10.
Son
,
S.
,
Park
,
H.
, and
Lee
,
K. H.
, 2002, “
Automated Laser Scanning System for Reverse Engineering and Inspection
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
8
), pp.
889
897
.
11.
ElMaraghy
,
H.
, and
Yang
,
X.
, 2003, “
Computer-Aided Planning of Laser Scanning of Complex Geometries
,”
CIRP Ann.
0007-8506,
52
(
1
), pp.
411
414
.
12.
Lamb
,
D. G.
,
Baird
,
D. L.
, and
Greenspan
,
M. A.
, 1999, “
An Automation System for Industrial 3-D Laser Digitizing
,”
Proceedings of the Second International Conference on 3-D Digital Imaging and Modeling
,
Ottawa, Canada
, October 4–8, pp.
148
157
.
13.
García
,
D.
,
Sebastián
,
J. M.
,
Sánchez
,
F. M.
,
Jiménez
,
L. M.
, and
González
,
J. M.
, 1999, “
3D Inspection System for Manufactured Machine Parts
,”
Proc. SPIE
0277-786X,
3652
, pp.
250
260
.
14.
Gu
,
P.
and
Chan
,
K.
, 1996, “
Generative Inspection Process and Probe Path Planning for Coordinate Measuring Machines
,”
J. Manuf. Syst.
0278-6125,
15
(
4
), pp.
240
255
.
15.
Bausch
, III,
J. J.
, 2000, “
Turbine Blade Fixture Design Using Kinematic Methods and Genetic Algorithms
,”
Proc. SPIE
0277-786X,
4192
, pp.
240
251
.
16.
Pahk
,
H. J.
and
Ahn
,
W. J.
, 1996, “
Precision Alignment Technique for Parts Having Thin Features Using Measurement Feedback Iterative Method in CAD/CAI Environment
,”
Int. J. Mach. Tools Manuf.
0890-6955,
36
(
2
), pp.
217
227
.
17.
Menq
,
C. H.
,
Yau
,
H. T.
, and
Lai
,
G. Y.
, 1992, “
Automated Precision Measurement of Surface Profile in CAD-Directed Inspection
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
2
), pp.
268
278
.
18.
Xi
,
F.
, and
Shu
,
C.
, 1999, “
CAD-Based Path Planning for 3D Line Laser Scanning
,”
Comput.-Aided Des.
0010-4485,
31
(
7
), pp.
473
479
.
19.
Zhang
,
G. X.
,
Liu
,
S. G.
,
Ma
,
X. H.
,
Wang
,
J. L.
,
Wu
,
Y. Q.
, and
Li
,
Z.
, 2002, “
Towards the Intelligent CMM
,”
CIRP Ann.
0007-8506,
51
(
1
), p.
437
.
20.
Impoco
,
G.
,
Cignoni
,
P.
, and
Scopigno
,
R.
, 2004, “
Closing Gaps by Clustering Unseen Directions
,”
2004 International Conference on Shape Modeling and Applications SMI 2004
, Genova, Italy, June 7–9, pp.
307
316
.
21.
Conoprobe OEM Manual, Optimet, Optical Metrology Ltd., P. O. B. 45021, Jerusalem 91450, Israel, Conoprobe OEM Manual, 2.1 ed. Optimet Manual P/N 3J06001.
22.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
, 2000, “
Error Compensation in Machine Tools—A Review. Part I: Geometric, Cutting-Force Induced and Fixture Dependent Errors
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
(
9
), pp.
1235
1256
.
23.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
, 2000, “
Error Compensation in Machine Tools—A Review. Part II: Thermal Errors
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
(
9
), pp.
1257
1284
.
You do not currently have access to this content.