Laser shock peening (LSP) is emerging as a competitive alternative technology to classical treatments to improve fatigue and corrosion properties of metals for a variety of important applications. LSP is often performed under a water confinement regime, which involves several complicated physical processes. A complete and self-closed LSP model is presented in this paper, which requires a sequential application of three submodels: a breakdown-plasma model, a confined-plasma model, and a finite element mechanics model. Simulation results are compared with experimental data in many aspects under a variety of typical LSP conditions, and good agreements are obtained.

1.
Montross
,
C. S.
,
Wei
,
T.
,
Ye
,
L.
,
Clark
,
G.
, and
Mai
,
Y. W.
, 2002, “
Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review
,”
Int. J. Fatigue
0142-1123,
24
, pp.
1021
1036
.
2.
Sollier
,
A.
,
Berthe
,
L.
,
Peyre
,
P.
,
Bartnicki
,
E.
, and
Fabbro
,
R.
, 2003, “
Laser-Matter Interaction in Laser Shock Processing
,”
Proc. SPIE
0277-786X,
4831
, pp.
463
467
.
3.
Colvin
,
J. D.
,
Ault
,
E. R.
,
King
,
W. E.
, and
Zimmerman
,
I. H.
, 2003, “
Computational Model for a Low-Temperature Laser-Plasma Driver for Shock-Processing of Metals and Comparison to Experimental Data
,”
Phys. Plasmas
1070-664X,
10
(
7
), pp.
2940
2947
.
4.
Sollier
,
A.
,
Berthe
,
L.
, and
Fabbro
,
R.
, 2001, “
Numerical Modeling of the Transmission of Breakdown Plasma Generated in Water During Laser Shock Processing
,”
Eur. Phys. J.: Appl. Phys.
1286-0042,
16
(
2
), pp.
131
139
.
5.
Wu
,
B. X.
, and
Shin
,
Y. C.
, 2006, “
Laser Pulse Transmission Through the Water Breakdown Plasma in Laser Shock Peening
,”
Appl. Phys. Lett.
0003-6951,
88
(
4
), pp.
041116
.
6.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
, 1990, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
0021-8979,
68
(
2
), pp.
775
784
.
7.
Zhang
,
W.
,
Yao
,
Y. L.
, and
Noyan
,
I. C.
, 2004, “
Microscale Laser Shock Peening of Thin Films, Part 1: Experiment, Modeling and Simulation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
10
17
.
8.
Wu
,
B. X.
, and
Shin
,
Y. C.
, 2005, “
A Self-Closed Thermal Model for Laser Shock Peening Under the Water Confinement Regime Configuration and Comparisons to Experiments
,”
J. Appl. Phys.
0021-8979,
97
(
11
), pp.
113517
-
11
.
9.
Peyre
,
P.
,
Sollier
,
A.
,
Chaieb
,
I.
,
Berthe
,
L.
,
Bartnicki
,
E.
,
Braham
,
C.
, and
Fabbro
,
R.
, 2003, “
FEM Simulation of Residual Stresses Induced by Laser Peening
,”
Eur. Phys. J.: Appl. Phys.
1286-0042,
23
(
2
), pp.
83
88
.
10.
Ding
,
K.
, and
Ye
,
L.
, 2003, “
Three-Dimensional Dynamic Finite Element Analysis of Multiple Laser Shock Peening Processes
,”
Surf. Eng.
0267-0844,
19
(
5
), pp.
351
358
.
11.
Braisted
,
W.
, and
Brockman
,
R.
, 1999, “
Finite Element Simulation of Laser Shock Peening
,”
Int. J. Fatigue
0142-1123,
21
(
7
), pp.
719
724
.
12.
Ding
,
K.
, and
Ye
,
L.
, 2003, “
FEM Simulation of Two Sided Laser Shock Peening of Thin Sections of Ti-6Al-4V Alloy
,”
Surf. Eng.
0267-0844,
19
(
2
), pp.
127
133
.
13.
Noack
,
J.
, and
Vogel
,
A.
, 1999, “
Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density
,”
IEEE J. Quantum Electron.
0018-9197,
35
(
8
), pp.
1156
1167
.
14.
Feng
,
Q.
,
Moloney
,
J. V.
,
Newell
,
A. C.
,
Wright
,
E. M.
,
Cook
,
K.
,
Kennedy
,
P. K.
,
Hammer
,
D. X.
,
Rockwell
,
B. A.
, and
Thompson
,
C. R.
, 1997, “
Theory and Simulation on the Threshold of Water Breakdown Induced by Focused Ultrashort Laser Pulses
,”
IEEE J. Quantum Electron.
0018-9197,
33
(
2
), pp.
127
137
.
15.
Kennedy
,
P. K.
, 1995, “
A First-Order Model for Computation of Laser-Induced Breakdown Thresholds in Ocular and Aqueous Media. I. Theory
,”
IEEE J. Quantum Electron.
0018-9197,
31
(
12
), pp.
2241
2249
.
16.
Keldysh
,
L. V.
, 1965, “
Ionization in Field of Strong Electromagnetic Wave
,”
Sov. Phys. JETP
0038-5646,
20
(
5
), pp.
1307
1314
.
17.
Docchio
,
F.
, 1988, “
Lifetimes of Plasmas Induced in Liquids and Ocular Media by Single Nd:YAG-Laser Pulses of Different Duration
,”
Europhys. Lett.
0295-5075,
6
, pp.
407
412
.
18.
Feit
,
M. D.
, and
Fleck
,
J. A.
, 1974,
“Effect of Refraction on Spot-Size Dependence of Laser-Induced Breakdown
,”
Appl. Phys. Lett.
0003-6951,
24
(
4
), pp.
169
172
.
19.
Harrach
,
R. J.
, 1977, “
Theory for Laser-Induced Breakdown Over a Vaporizing Target Surface
,” Report No. UCRL-52389, Lawrence Livermore Laboratory, Livermore, CA.
20.
Mao
,
X.
, and
Russo
,
R. E.
, 1977, “
Observation of Plasma Shielding by Measuring Transmitted and Reflected Laser Pulse Temporal Profiles
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
64
, pp.
1
6
.
21.
Carls
,
J. C.
,
Seo
,
Y.
, and
Brock
,
J. R
, 1991, “
Laser-Induced Breakout and Detonation Waves in Droplets. II. Model
,”
J. Opt. Soc. Am. B
0740-3224,
8
(
2
), pp.
329
336
.
22.
Pedrotti
,
F. L.
, and
Pedrotti
,
L. S.
, 1993,
Introduction to Optics
, 2nd edition,
Prentice Hall
,
Englewood Cliffs, NJ
.
23.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
24.
Tannehill
,
J. C.
,
Anderson
,
D. A.
, and
Pletcher
,
R. H.
, 1997,
Computational Fluid Mechanics and Heat Transfer
, 2nd ed.,
Taylor and Francis
,
London
.
25.
ABAQUS User’s Manual, Version: 6.2
, 2001,
Hibbitt, Karlsson and Sorensen, Inc.
26.
Berthe
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
, and
Bartnicki
,
E.
, 1998, “
Experimental Study of the Transmission of Breakdown Plasma Generated During Laser Shock Processing
,”
Eur. Phys. J.: Appl. Phys.
1286-0042,
3
, pp.
215
218
.
27.
Berthe
,
L.
,
Fabrro
,
R.
,
Peyre
,
P.
,
Tollier
,
L.
, and
Bartnicki
,
E.
, 1997, “
Shock Waves From a Water-Confined Laser-Generated Plasma
,”
J. Appl. Phys.
0021-8979,
82
(
6
), pp.
2826
2832
.
28.
Devaux
,
D.
,
Fabbro
,
R.
,
Tollier
,
L.
, and
Bartnicki
,
E.
, 1993, “
Generation of Shock Waves by Laser-Induced Plasma in Confined Geometry
,”
J. Appl. Phys.
0021-8979,
74
(
4
), pp.
2268
2273
.
29.
Saito
,
K.
,
Takatani
,
K.
,
Sakka
,
T.
, and
Ogata
,
Y. H.
, 2002, “
Observation of the Light Emitting Region Produced by Pulsed Laser Irradiation to a Solid-Liquid Interface
,”
Appl. Surf. Sci.
0169-4332,
197–198
, pp.
56
60
.
30.
Ballard
,
P.
, 1991, “
Residual Stresses Induced by Rapid Impact-Applications of Laser Shocking
,” Ph.D. thesis,
Ecole Polytechnique
, April.
31.
Peyre
,
P.
,
Fabbro
,
R.
,
Merrien
,
P.
, and
Lieurade
,
H. P.
, 1996, “
Laser Shock Processing of Aluminum Alloys, Application to High Cycle Fatigue Behavior
,”
Mater. Sci. Eng., A
0921-5093,
A210
(
1-2
), pp.
102
113
.
32.
Peyre
,
P.
,
Berthe
,
L.
,
Scherpereel
,
X.
,
Fabbro
,
R.
, and
Bartnicki
,
E.
, 1998, “
Experimental Study of Laser-Driven Shock Waves in Stainless Steels
,”
J. Appl. Phys.
0021-8979,
84
(
11
),
5985
5992
.
You do not currently have access to this content.