Laser shock peening (LSP) is emerging as a competitive alternative technology to classical treatments to improve fatigue and corrosion properties of metals for a variety of important applications. LSP is often performed under a water confinement regime, which involves several complicated physical processes. A complete and self-closed LSP model is presented in this paper, which requires a sequential application of three submodels: a breakdown-plasma model, a confined-plasma model, and a finite element mechanics model. Simulation results are compared with experimental data in many aspects under a variety of typical LSP conditions, and good agreements are obtained.
1.
Montross
, C. S.
, Wei
, T.
, Ye
, L.
, Clark
, G.
, and Mai
, Y. W.
, 2002, “Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review
,” Int. J. Fatigue
0142-1123, 24
, pp. 1021
–1036
.2.
Sollier
, A.
, Berthe
, L.
, Peyre
, P.
, Bartnicki
, E.
, and Fabbro
, R.
, 2003, “Laser-Matter Interaction in Laser Shock Processing
,” Proc. SPIE
0277-786X, 4831
, pp. 463
–467
.3.
Colvin
, J. D.
, Ault
, E. R.
, King
, W. E.
, and Zimmerman
, I. H.
, 2003, “Computational Model for a Low-Temperature Laser-Plasma Driver for Shock-Processing of Metals and Comparison to Experimental Data
,” Phys. Plasmas
1070-664X, 10
(7
), pp. 2940
–2947
.4.
Sollier
, A.
, Berthe
, L.
, and Fabbro
, R.
, 2001, “Numerical Modeling of the Transmission of Breakdown Plasma Generated in Water During Laser Shock Processing
,” Eur. Phys. J.: Appl. Phys.
1286-0042, 16
(2
), pp. 131
–139
.5.
Wu
, B. X.
, and Shin
, Y. C.
, 2006, “Laser Pulse Transmission Through the Water Breakdown Plasma in Laser Shock Peening
,” Appl. Phys. Lett.
0003-6951, 88
(4
), pp. 041116
.6.
Fabbro
, R.
, Fournier
, J.
, Ballard
, P.
, Devaux
, D.
, and Virmont
, J.
, 1990, “Physical Study of Laser-Produced Plasma in Confined Geometry
,” J. Appl. Phys.
0021-8979, 68
(2
), pp. 775
–784
.7.
Zhang
, W.
, Yao
, Y. L.
, and Noyan
, I. C.
, 2004, “Microscale Laser Shock Peening of Thin Films, Part 1: Experiment, Modeling and Simulation
,” ASME J. Manuf. Sci. Eng.
1087-1357, 126
(1
), pp. 10
–17
.8.
Wu
, B. X.
, and Shin
, Y. C.
, 2005, “A Self-Closed Thermal Model for Laser Shock Peening Under the Water Confinement Regime Configuration and Comparisons to Experiments
,” J. Appl. Phys.
0021-8979, 97
(11
), pp. 113517
-11
.9.
Peyre
, P.
, Sollier
, A.
, Chaieb
, I.
, Berthe
, L.
, Bartnicki
, E.
, Braham
, C.
, and Fabbro
, R.
, 2003, “FEM Simulation of Residual Stresses Induced by Laser Peening
,” Eur. Phys. J.: Appl. Phys.
1286-0042, 23
(2
), pp. 83
–88
.10.
Ding
, K.
, and Ye
, L.
, 2003, “Three-Dimensional Dynamic Finite Element Analysis of Multiple Laser Shock Peening Processes
,” Surf. Eng.
0267-0844, 19
(5
), pp. 351
–358
.11.
Braisted
, W.
, and Brockman
, R.
, 1999, “Finite Element Simulation of Laser Shock Peening
,” Int. J. Fatigue
0142-1123, 21
(7
), pp. 719
–724
.12.
Ding
, K.
, and Ye
, L.
, 2003, “FEM Simulation of Two Sided Laser Shock Peening of Thin Sections of Ti-6Al-4V Alloy
,” Surf. Eng.
0267-0844, 19
(2
), pp. 127
–133
.13.
Noack
, J.
, and Vogel
, A.
, 1999, “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density
,” IEEE J. Quantum Electron.
0018-9197, 35
(8
), pp. 1156
–1167
.14.
Feng
, Q.
, Moloney
, J. V.
, Newell
, A. C.
, Wright
, E. M.
, Cook
, K.
, Kennedy
, P. K.
, Hammer
, D. X.
, Rockwell
, B. A.
, and Thompson
, C. R.
, 1997, “Theory and Simulation on the Threshold of Water Breakdown Induced by Focused Ultrashort Laser Pulses
,” IEEE J. Quantum Electron.
0018-9197, 33
(2
), pp. 127
–137
.15.
Kennedy
, P. K.
, 1995, “A First-Order Model for Computation of Laser-Induced Breakdown Thresholds in Ocular and Aqueous Media. I. Theory
,” IEEE J. Quantum Electron.
0018-9197, 31
(12
), pp. 2241
–2249
.16.
Keldysh
, L. V.
, 1965, “Ionization in Field of Strong Electromagnetic Wave
,” Sov. Phys. JETP
0038-5646, 20
(5
), pp. 1307
–1314
.17.
Docchio
, F.
, 1988, “Lifetimes of Plasmas Induced in Liquids and Ocular Media by Single Nd:YAG-Laser Pulses of Different Duration
,” Europhys. Lett.
0295-5075, 6
, pp. 407
–412
.18.
Feit
, M. D.
, and Fleck
, J. A.
, 1974, “Effect of Refraction on Spot-Size Dependence of Laser-Induced Breakdown
,” Appl. Phys. Lett.
0003-6951, 24
(4
), pp. 169
–172
.19.
Harrach
, R. J.
, 1977, “Theory for Laser-Induced Breakdown Over a Vaporizing Target Surface
,” Report No. UCRL-52389, Lawrence Livermore Laboratory, Livermore, CA.20.
Mao
, X.
, and Russo
, R. E.
, 1977, “Observation of Plasma Shielding by Measuring Transmitted and Reflected Laser Pulse Temporal Profiles
” Appl. Phys. A: Mater. Sci. Process.
0947-8396, 64
, pp. 1
–6
.21.
Carls
, J. C.
, Seo
, Y.
, and Brock
, J. R
, 1991, “Laser-Induced Breakout and Detonation Waves in Droplets. II. Model
,” J. Opt. Soc. Am. B
0740-3224, 8
(2
), pp. 329
–336
.22.
Pedrotti
, F. L.
, and Pedrotti
, L. S.
, 1993, Introduction to Optics
, 2nd edition, Prentice Hall
, Englewood Cliffs, NJ
.23.
Patankar
, S. V.
, 1980, Numerical Heat Transfer and Fluid Flow
, Hemisphere
, New York
.24.
Tannehill
, J. C.
, Anderson
, D. A.
, and Pletcher
, R. H.
, 1997, Computational Fluid Mechanics and Heat Transfer
, 2nd ed., Taylor and Francis
, London
.25.
ABAQUS User’s Manual, Version: 6.2
, 2001, Hibbitt, Karlsson and Sorensen, Inc.
26.
Berthe
, L.
, Fabbro
, R.
, Peyre
, P.
, and Bartnicki
, E.
, 1998, “Experimental Study of the Transmission of Breakdown Plasma Generated During Laser Shock Processing
,” Eur. Phys. J.: Appl. Phys.
1286-0042, 3
, pp. 215
–218
.27.
Berthe
, L.
, Fabrro
, R.
, Peyre
, P.
, Tollier
, L.
, and Bartnicki
, E.
, 1997, “Shock Waves From a Water-Confined Laser-Generated Plasma
,” J. Appl. Phys.
0021-8979, 82
(6
), pp. 2826
–2832
.28.
Devaux
, D.
, Fabbro
, R.
, Tollier
, L.
, and Bartnicki
, E.
, 1993, “Generation of Shock Waves by Laser-Induced Plasma in Confined Geometry
,” J. Appl. Phys.
0021-8979, 74
(4
), pp. 2268
–2273
.29.
Saito
, K.
, Takatani
, K.
, Sakka
, T.
, and Ogata
, Y. H.
, 2002, “Observation of the Light Emitting Region Produced by Pulsed Laser Irradiation to a Solid-Liquid Interface
,” Appl. Surf. Sci.
0169-4332, 197–198
, pp. 56
–60
.30.
Ballard
, P.
, 1991, “Residual Stresses Induced by Rapid Impact-Applications of Laser Shocking
,” Ph.D. thesis, Ecole Polytechnique
, April.31.
Peyre
, P.
, Fabbro
, R.
, Merrien
, P.
, and Lieurade
, H. P.
, 1996, “Laser Shock Processing of Aluminum Alloys, Application to High Cycle Fatigue Behavior
,” Mater. Sci. Eng., A
0921-5093, A210
(1-2
), pp. 102
–113
.32.
Peyre
, P.
, Berthe
, L.
, Scherpereel
, X.
, Fabbro
, R.
, and Bartnicki
, E.
, 1998, “Experimental Study of Laser-Driven Shock Waves in Stainless Steels
,” J. Appl. Phys.
0021-8979, 84
(11
), 5985
–5992
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.