In solid freeform fabrication (SFF) processes involving thermal deposition, thermal control of the process is critical for obtaining consistent build conditions and in limiting residual stress-induced warping of parts. In this research, a nondimensionalized plot (termed a process map) is developed from numerical models of laser-based material deposition of thin-walled structures. This process map quantifies the effects of changes in wall height, laser power, deposition speed and part preheating on melt pool length, which is an essential process parameter to control in order to obtain consistent build conditions. The principal application of this work is to the Laser Engineered Net Shaping (LENS) process under development at Sandia Laboratories; however, the general approach and a subset of the presented results are applicable to any SFF process involving a moving heat source. Procedures are detailed for using the process map to predict melt pool length and predictions are compared against experimentally measured melt pool lengths for stainless steel deposition in the LENS process.

1.
Bourell, D. L., Beaman, J. J., Crawford, R. H., Marcus, H. L., and Barlow, J. W., eds., 1999, Solid Freeform Fabrication Proceedings, Proc. 1999 Solid Freeform Fabrication Symposium, Austin, August 1999.
2.
Brown
,
S.
, and
Song
,
H.
,
1992
, “
Finite Element Simulation of Welding of Large Structures
,”
ASME J. Eng. Ind.
,
114
, pp.
441
451
.
3.
Brown
,
S.
, and
Song
,
H.
,
1992
, “
Implications of Three-Dimensional Numerical Simulations of Welding of Large Structures
,”
Welding Journal
,
71
, pp.
55s–62s
55s–62s
.
4.
Michaleris
,
P.
, and
DeBiccari
,
A.
,
1997
, “
Prediction of Welding Distortion
,”
Welding Journal
,
76
(
4
), pp.
172s–181s
172s–181s
.
5.
Ueda
,
Y.
,
Murakawa
,
H.
,
Gu
,
S. M.
,
Okumoto
,
Y.
, and
Kamichika
,
R.
,
1992
, “
Simulation of Welding Deformation for Precision Ship Assembling (Report I): In-Plane Deformation of Butt Welded Plate
,”
Trans. JWRI
,
21
, pp.
265
275
.
6.
Chakravarti, A., Malik, K. M., and Golak, J., 1985, “Prediction of Distortion and Residual Stresses in Panel Welds,” Symposium on Computer Modeling of Fabrication Processes and Constitutive Behavior of Metals, Ottawa, Ontario, pp. 547–561.
7.
Chin, R. K., Beuth, J. L., and Amon, C. H., 1995, “Control of Residual Thermal Stresses in Shape Deposition Manufacturing,” Solid Freeform Fabrication Proceedings (H. L. Marcus, J. J. Beaman, D. L. Bourell, J. W. Barlow, and R. H. Crawford, eds.), Proc. 1995 Solid Freeform Fabrication Symposium, Austin, August 1995, pp. 221–228.
8.
Chin
,
R. K.
,
Beuth
,
J. L.
, and
Amon
,
C. H.
,
1996
, “
Thermomechanical Modeling of Molten Metal Droplet Solidification Applied to Layered Manufacturing
,”
Mech. Mater.
,
24
, pp.
257
271
.
9.
Chin, R. K., Beuth, J. L., and Amon, C. H., 1996, “Thermomechanical Modeling of Successive Material Deposition in Layered Manufacturing,” Solid Freeform Fabrication Proceedings (D. L. Bourell, J. J. Beaman, H. L. Marcus, R. H. Crawford, and J. W. Barlow, eds.), Proc. 1996 Solid Freeform Fabrication Symposium, Austin, August 1996, pp. 507–514.
10.
Chin, R. K., Beuth, J. L., and Amon, C. H., 1999, “Successive Deposition of Metals in Solid Freeform Fabrication Processes, Part II: Thermomechanical Models of Layers and Droplet Columns,” ASME J. Manuf. Sci. Eng., submitted.
11.
Chin, R. K., Beuth, J. L., and Amon, C. H., 1996, “Successive Deposition of Metals in Solid Freeform Fabrication Processes, Part II: Thermomechanical Models of Adjacent Droplets,” ASME J. Manuf. Sci. Eng., submitted.
12.
Klingbeil, N. W., Zinn, J. W., and Beuth, J. L., 1997, “Measurement of Residual Stresses in Parts Created by Shape Deposition Manufacturing,” Solid Freeform Fabrication Proceedings (D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds.), Proc. 1997 Solid Freeform Fabrication Symposium, Austin, August 1997, pp. 125–132.
13.
Klingbeil, N. W., Beuth, J. L., Chin, R. K., and Amon, C. H., 1998, “Measurement and Modeling of Residual Stress-Induced Warping in Direct Metal Deposition Processes,” Solid Freeform Fabrication Proceedings (D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds.), Proc. 1998 Solid Freeform Fabrication Symposium, Austin, August 1998, pp. 367–374.
14.
Fessler, J. R., Merz, R., Nickel, A. H., and Prinz, F. B., 1996, “Laser Deposition of Metals for Shape Deposition Manufacturing,” Solid Freeform Fabrication Proceedings (D. L. Bourell, J. J. Beaman, H. L. Marcus, R. H. Crawford, and J. W. Barlow, eds.), Proc. 1996 Solid Freeform Fabrication Symposium, Austin, August 1996, pp. 117–124.
15.
Nickel, A. H., Barnett, D. M., and Prinz, F. B., 1999, “Deposition Pattern Effects in Layered Manufacturing,” Mater. Sci. Eng., A, submitted.
16.
Amon
,
C.H.
,
Schmaltz
,
K.S.
,
Merz
,
R.
, and
Prinz
,
F.B.
,
1996
, “
Numerical and Experimental Investigation of Interface Bonding via substrate Remelting of an Impinging Molten Metal Droplet
,”
Journal of Heat Transfer
,
118
, pp.
164
-
172
.
17.
Zarzalejo
,
L. J.
,
Schmaltz
,
K. S.
, and
Amon
,
C. H.
,
1999
, “
Molten Droplet Solidification and Substrate Remelting in Microcasting, Part I: Numerical Modeling and Experimental Verification
,”
J. Heat and Mass Transfer
,
34
, pp.
477
486
.
18.
Schmaltz
,
K. S.
,
Zarzalejo
,
L. J.
, and
Amon
,
C. H.
,
1999
, “
Molten Droplet Solidification and Substrate Remelting in Microcasting Part II: Parametric Study and Effect of Dissimilar Materials
,”
J. Heat and Mass Transfer
,
35
, pp.
17
23
.
19.
Orme
,
M. E.
,
Huang
,
C.
, and
Courter
,
J.
,
1996
, “
Precision Droplet-Based Manufacturing and Material Synthesis: Fluid Dynamics and Thermal Control Issues
,”
Atomization Sprays
,
6
, pp.
305
329
.
20.
Orme
,
M. E.
, and
Huang
,
C.
,
1997
, “
Phase Change Manipulation for Droplet-Based Solid Freeform Fabrication
,”
ASME J. Heat Transfer
,
119
, pp.
818
823
.
21.
Amon
,
C.H.
,
Beuth
,
J.L.
,
Merz
,
R.
,
Prinz
,
F.B.
, and
Weiss
,
L.E.
,
1998
, “
Shape Depostion Manufacturing with Microcasting: Processing, Thermal and Mechanical Issues”
,
Journal of Manufacturing Science and Engineering
,
120
, No.
2
, 1998, pp.
656
-
665
.
22.
Yardimci, M. A., Guceri, S. I., Agarwala, M., and Danforth, S. C., 1996, “Part Quality Prediction Tools for Fused Deposition Processing,” Solid Freeform Fabrication Proceedings (D. L. Bourell, J. J. Beaman, H. L. Marcus, R. H. Crawford, and J. W. Barlow, eds.), Proc. 1996 Solid Freeform Fabrication Symposium, Austin, August, pp. 539–548.
23.
Yardimci, M. A., Hattori, T., Guceri, S. I., and Danforth, S. C., 1997, “Thermal Analysis of Fused Deposition,” Solid Freeform Fabrication Proceedings (D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds.), Proc. 1997 Solid Freeform Fabrication Symposium, Austin, August, pp. 689–698.
24.
Griffith, M. L., Keicher, D. M., Atwood, C. L., Romero, J. A., Smugeresky, J. E., Harwell, L. D., and Greene, D. L., 1996, “Freeform Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS),” Solid Freeform Fabrication Proceedings (D. L. Bourell, J. J. Beaman, H. L. Marcus, R. H. Crawford, and J. W. Barlow, eds.), The University of Texas at Austin, August 1996, pp. 125–132.
25.
Griffith
,
M. L.
,
Schlienger
,
M. E.
,
Harwell
,
L. D.
,
Oliver
,
M. S.
,
Baldwin
,
M. D.
,
Ensz
,
M. T.
,
Smugeresky
,
J. E.
,
Essien
,
M.
,
Brooks
,
J.
,
Robino
,
C. V.
,
Hofmeister
,
W. H.
,
Wert
,
M. J.
, and
Nelson
,
D. V.
,
1999
, “
Understanding Thermal Behavior in the LENS Process
,”
Mater. Des.
,
20
, No.
2/3
, pp.
107
114
.
26.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
Trans. ASME
,
68
, pp.
849
866
.
27.
Dobranich, D., and Dykhuizen, R. C., 1998, “Scoping Thermal Calculation of the LENS Process,” Sandia National Laboratories Internal Report.
28.
Dykhuizen, R. C., and Dobranich, D., 1998, “Cooling Rates in the LENS Process,” Sandia National Laboratories Internal Report.
29.
Dykhuizen, R. C., and Dobranich, D., 1998, “Analytical Thermal Models for the LENS Process,” Sandia National Laboratories Internal Report.
30.
Hofmeister, W. M., and Wert, M. J., 1999, Private Communication, Vanderbilt University, Nashville, TN.
You do not currently have access to this content.