Material handling of compliant parts is one of the most critical and underresearched problems in the sheet metal stamping industry. The fundamental shortcoming of currently studied material handling systems for sheet metal stamping is the lack of analysis of its impact on part dimensional quality and production throughput. This paper addresses this problem by development of a generic methodology for modeling and optimization of part holding end-effector layout in order to minimize part dimensional deformation during handling operations. The methodology extends the design of “N-2-1” fixturing layout by adding part movability conditions. It considers part CAD model, handling direction and motion kinematic parameters to determine the best end effector layout. This methodology is realized by integrating FEM part and loading modeling with the optimization algorithm. It can be implemented into the design stage of a stamping line so that the trial and error process, which is current industrial practice, can be greatly shortened and the production throughput increased. Experimental results verify the proposed part holding end-effector layout methodology.

1.
Li, D., Ceglarek, D., and Shi, J., 1993, “Sliding Door Process Variation Study,” Technical Report, University of Michigan, Ann Arbor.
2.
Sprow
,
E.
,
1991
, “
Sheet Metal FMS: Too Big a Jump
,”
Tooling and Production
,
57
, No.
7
, pp.
53
55
.
3.
Wu, X., Shi, J., and Hu, S., 1996, “On-Site Measurement and Process Monitoring for Stamping Variation Reduction,” Technical Report, the 2mm Program, NIST-Advanced Technology Program, pp. 61–80.
4.
Ceglarek, D., Qi, G., Tang, Y., and Li, H., 1999, “Integration of Material Handling and Press Motion in Die design: End Effector Location Optimization Software,” Technical Report, the Near Zero Stamping Program, NIST-Advanced Technology Program.
5.
Meller
,
R. D.
,
1997
, “
Multi-Bay Manufacturing Facility Layout Problem
,”
Nippon Kagaku Zasshi
,
35
, pp.
1229
1237
.
6.
Duffie
,
N. A.
, and
Prabhu
,
V. V.
,
1995
, “
Distributed System-Level Control of Vehicles in a High-Performance Material Transfer System
,”
IEEE Trans. Control Syst. Technol.
,
3
, pp.
212
217
.
7.
Kiran
,
A. S.
, and
Tansel
,
B. C.
,
1989
, “
Optimal Pickup Point Location on Material Handling Networks
,”
Int. J. Prod. Res.
,
27
, pp.
1475
1486
.
8.
Chittratanawat
,
S.
, and
Noble
,
J. S.
,
1999
, “
Integrated Approach for Facility Layout, P/D Location and Material Handling System Design
,”
Int. J. Prod. Res.
,
37
, No.
3
, pp.
683
706
.
9.
Stone
,
R. S. W.
,
Brett
,
P. N.
, and
Evans
,
B. S.
,
1998
, “
An Automated Handling System for Soft Compact Shaped Non-rigid Products
,”
Mechatronics
,
8
, pp.
85
102
.
10.
Taylor, P., 1994, “A Toolbox of Garment Handling Techniques,” IEEE Colloquium on Intelligent Automation for Processing Non-Rigid Products, vol. 1, pp. 1–4.
11.
Buckingham, R. O., and Newell, G. C., 1992, “Automated Handling, Lay-up and Consolidation of Composite Pre-preg,” Proc 8th Cape Conference, Edinburgh, August, pp. 327–332.
12.
Shacklock, A. P., Brett, P. N., and Khodabandehloo K., 1991, “Robotic Handling of Complex Materials,” IMACS IFAC Symposium, Modelling and Control of Technological Systems, Lille.
13.
Hockenberger
,
M.
, and
DeMeter
,
E.
,
1995
, “
The Effect of Machining Fixture Design Parameters on Workpiece Displacement
,”
Manufacturing Review
,
8
, No.
1
, pp.
22
32
.
14.
Asada
,
H.
, and
By
,
B. A.
,
1985
, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly with Automatically Reconfigurable Fixtures
,”
IEEE J. Rob. Autom.
,
RA-1
, No.
2
, pp.
86
94
.
15.
Chou
,
Y-C.
,
Chandru
,
V.
, and
Barash
,
M. M.
,
1989
, “
A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis
,”
ASME J. Eng. Ind.
,
111
, pp.
299
306
.
16.
Salisbury
,
J. K.
, and
Roth
,
B.
,
1983
, “
Kinematic and Force Analysis of Articulated Mechanical Hands
,”
ASME J. Mech. Transm., Autom. Des.
,
105
, pp.
35
41
.
17.
Menassa
,
R.
, and
DeVries
,
W.
,
1989
, “
Locating Point Synthesis in Fixture Design
,”
CIRP Ann.
,
38/1
, pp.
165
169
.
18.
Menassa
,
R.
, and
DeVries
,
W.
,
1991
, “
Optimization Methods Applied to Selecting Support Positions in Fixturing Design
,”
ASME J. Eng. Ind.
,
113
, pp.
412
418
.
19.
DeMeter
,
E. C.
,
1995
, “
Min-Max Load Model for Optimizing Machining Fixture Performance
,”
ASME J. Eng. Ind.
,
117
, pp.
186
193
.
20.
Wu
,
Y.
,
Rong
,
Y.
,
Ma
,
W.
, and
LeClair
,
S. R.
,
1998
, “
Automated Modular Fixture Planning: Accuracy, Clamping, and Accessibility Analyses
,”
Rob. Comput.-Integr. Manufact.
,
14
, No.
1
, pp.
17
26
.
21.
Youcef-Toumi
,
K.
,
Liu
,
W.
, and
Asada
,
H.
,
1988
, “
Computer-Aided Analysis of Reconfigurable Fixtures and Sheet Metal Parts for Robotics Drilling
,”
Rob. Comput.-Integr. Manufact.
,
4
, No.
3–4
, pp.
387
393
.
22.
Cai
,
W.
,
Hu
,
S.
, and
Yuan
,
J.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
318
324
.
23.
DeMeter
,
E. C.
,
1998
, “
Fast Support Layout Optimization
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
1221
1239
.
24.
Li
,
B.
, and
Melkote
,
S. N.
,
1999
, “
Improved Workpiece Location Accuracy Through Fixture Layout Optimization
,”
Int. J. Mach. Tools Manuf.
,
39
, No.
6
, pp.
871
883
.
25.
Nguyen
,
V.
,
1988
, “
Constructing Force-Closure Grasps
,”
Int. J. Robot. Res.
,
7
, No.
3
, pp.
3
16
.
26.
DeMeter
,
E. C.
,
1994
, “
Restraint Analysis of Fixtures Which Rely on Surface Contact
,”
ASME J. Eng. Ind.
,
116
, pp.
207
215
.
27.
Rearick
,
M. R.
,
Hu
,
S. J.
, and
Wu
,
S. M.
,
1993
, “
Optimal Fixture Design for Deformable Sheet Metal Workpieces
,”
Transactions of NAMRI/SME
,
XXI
, pp.
407
412
.
28.
Khan
,
A.
,
Ceglarek
,
D.
,
Shi
,
J.
,
Ni
,
J.
, and
Woo
,
T. C.
,
1999
Sensor Optimization for Fault Diagnosis in Single Fixture System: A Methodology
,”
ASME J. Manuf. Sci. Eng.
,
121
(
1
), pp.
109
117
.
You do not currently have access to this content.