Abstract

The tire-road interaction generates vehicle driving forces, which affect vehicle performance such as maximum acceleration and stability. Sequential extended Kalman filter (S-EKF) integrated with a slope method has been used for tire-road friction coefficient estimation with its own limitations, along with several “cause-based” and “effect-based” methods. This research proposes a new stochastic-based evaluation criterion using existing vehicle sensor signals with the help of the data-driven Kriging model. The proposed estimation method is validated by both CarSim simulation and experimental studies, respectively, under different road conditions. The results show that the proposed novel criterion has a strong correlation with the road friction coefficient and provide an improved tire-road friction coefficient estimation. A signal fusion estimation scheme based on both S-EKF and proposed evaluations is developed to improve estimation robustness.

References

1.
Kiencke
,
U.
, and
Nielsen
,
L.
,
2000
,
Automotive Control Systems: For Engine, Driveline, and Vehicle
,
Springer
,
Berlin/Heidelberg
.
2.
Wang
,
Z.
,
Zhu
,
J.
,
Zhang
,
L.
, and
Wang
,
Y.
,
2018
, “
Automotive ABS/DYC Coordinated Control Under Complex Driving Conditions
,”
IEEE Access
,
6
, pp.
32769
32779
.
3.
Khatun
,
P.
,
Bingham
,
C. M.
,
Schofield
,
N.
, and
Mellor
,
P.
,
2003
, “
Application of Fuzzy Control Algorithms for Electric Vehicle Antilock Braking/Traction Control Systems
,”
IEEE Trans. Veh. Technol.
,
52
(
5
), pp.
1356
1364
.
4.
Anwar
,
S.
,
2005
, “
Yaw Stability Control of an Automotive Vehicle Via Generalized Predictive Algorithm
,”
Proceedings of the 2005, American Control Conference
,
Portland, OR
,
June 8–10
, IEEE, pp.
435
440
.
5.
Tang
,
J.
,
Jiang
,
H. B.
,
Geng
,
G. Q.
, and
Xue
,
N. W.
,
2011
, “Research on Modeling of EPS With Bond-Graph Theory and Simulating of Steering Maneuverability,”
Key Engineering Materials
,
L.
Chen
,
Y.
Zhang
,
A.
Feng
,
Z.
Xu
,
B.
Li
, and
H.
Shen
, eds., Vol. 464,
Trans Tech Publications
,
Stafa-Zurich, Switzerland
, pp.
736
740
.
6.
Zhu
,
G. G.
, and
Miao
,
C.
,
2019
, “
Real-Time Co-Optimization of Vehicle Route and Speed Using Generic Algorithm for Improved Fuel Economy
,”
Mech. Eng.
,
141
(
3
), pp.
S08
S15
.
7.
Gillespie
,
T. D.
,
1992
,
Fundamentals of Vehicle Dynamics
, Technical Report, SAE Technical Paper.
8.
Wei
,
W.
,
Dourra
,
H.
, and
Zhu
,
G.
,
2022
, “
Vehicle Tire Traction Torque Estimation Using a Dual Extended Kalman Filter
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
3
), p.
031004
.
9.
Lee
,
H.
, and
Tomizuka
,
M.
,
2003
, “
Adaptive Vehicle Traction Force Control for Intelligent Vehicle High-Way Systems (IVHSS)
,”
IEEE Trans. Ind. Electron.
,
50
(
1
), pp.
37
47
.
10.
Rajamani
,
R.
,
Piyabongkarn
,
N.
,
Lew
,
J.
,
Yi
,
K.
, and
Phanomchoeng
,
G.
,
2010
, “
Tire-Road Friction-Coefficient Estimation
,”
IEEE Control Syst.
,
30
(
4
), pp.
54
69
.
11.
Rajamani
,
R.
,
Phanomchoeng
,
G.
,
Piyabongkarn
,
D.
, and
Lew
,
J. Y.
,
2011
, “
Algorithms for Real-Time Estimation of Individual Wheel Tire-Road Friction Coefficients
,”
IEEE/ASME Trans. Mechatron.
,
17
(
6
), pp.
1183
1195
.
12.
Singh
,
K. B.
, and
Taheri
,
S.
,
2015
, “
Estimation of Tire-Road Friction Coefficient and Its Application in Chassis Control Systems
,”
Syst. Sci. Control Eng.
,
3
(
1
), pp.
39
61
.
13.
Castillo Aguilar
,
J. J.
,
Cabrera Carrillo
,
J. A.
,
Guerra Fernández
,
A. J.
, and
Carabias Acosta
,
E.
,
2015
, “
Robust Road Condition Detection System Using In-Vehicle Standard Sensors
,”
Sensors
,
15
(
12
), pp.
32056
32078
.
14.
Acosta
,
M.
,
Kanarachos
,
S.
, and
Blundell
,
M.
,
2017
, “
Road Friction Virtual Sensing: A Review of Estimation Techniques With Emphasis on Low Excitation Approaches
,”
Appl. Sci.
,
7
(
12
), p.
1230
.
15.
Khaleghian
,
S.
,
Emami
,
A.
, and
Taheri
,
S.
,
2017
, “
A Technical Survey on Tire-Road Friction Estimation
,”
Friction
,
5
(
2
), pp.
123
146
.
16.
Jokela
,
M.
,
Kutila
,
M.
, and
Le
,
L.
,
2009
, “
Road Condition Monitoring System Based on a Stereo Camera
,”
2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing
,
Cluj-Napoca, Romania
,
Aug. 27–29
, IEEE, pp.
423
428
.
17.
Miller
,
A.
,
Rim
,
K.
,
Chopra
,
P.
,
Kelkar
,
P.
, and
Likhachev
,
M.
,
2020
, “
Cooperative Perception and Localization for Cooperative Driving
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, IEEE, pp.
1256
1262
.
18.
Castillo
,
J. J.
,
Cabrera
,
J. A.
,
Guerra
,
A. J.
, and
Simon
,
A.
,
2015
, “
A Novel Electrohydraulic Brake System With Tire–Road Friction Estimation and Continuous Brake Pressure Control
,”
IEEE Trans. Ind. Electron.
,
63
(
3
), pp.
1863
1875
.
19.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.
20.
Gillespie
,
T. D.
,
2004
,
CarSim Data Manual
,
Mechanical Simulation Corporation
,
Ann Arbor, MI
.
21.
Pacejka
,
H. B.
, and
Bakker
,
E.
,
1992
, “
The Magic Formula Tyre Model
,”
Veh. Syst. Dyn.
,
21
(
S1
), pp.
1
18
.
22.
Fujii
,
K.
, and
Fujimoto
,
H.
,
2007
, “
Traction Control Based on Slip Ratio Estimation Without Detecting Vehicle Speed for Electric Vehicle
,”
2007 Power Conversion Conference-Nagoya
,
Nagoya, Japan
,
Apr. 2–5
, IEEE, pp.
688
693
.
23.
Tang
,
J.
,
Pal
,
A.
,
Dai
,
W.
,
Archer
,
C.
,
Yi
,
J.
, and
Zhu
,
G.
,
2021
, “
Stochastic Bayesian Optimization for Predicting Borderline Knock
,”
Int. J. Engine Res.
, 24(3
)
, pp.
793
807
.
24.
Tang
,
J.
,
Pal
,
A.
,
Dai
,
W.
,
Archer
,
C.
,
Yi
,
J.
, and
Zhu
,
G.
,
2022
, “
Borderline Knock Prediction Using Machine Learned Kriging Model
,”
2022 American Control Conference (ACC)
,
Atlanta, GA
,
June 8–10
, IEEE, pp.
3038
3043
.
25.
Wei
,
W.
,
Dourra
,
H.
, and
Zhu
,
G.
,
2021
, “
Transfer Case Clutch Torque Modeling and Validation Under Slip and Overtaken Conditions
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
7
), p.
071003
.
You do not currently have access to this content.