Abstract

Predicting the chemical and physical processes occurring in Lithium-ion cells with high-fidelity electrochemical models is today a critical requirement to accelerate the design and optimization of battery packs for automotive and aerospace applications. One of the common issues associated with electrochemical models is the complexity of parameter identification, particularly when relying only on experimental data obtained via non-invasive techniques. This paper presents a novel approach to improve the common methods of parameter calibration that consists of matching the predicted terminal voltage to test data via optimization methods. The study is conducted for an nickel-manganese-cobalt (NMC)-graphite cell, modeled using a reduced-order Extended Single Particle Model (ESPM). The proposed approach relies on using a large-scale particle swarm optimization (PSO), modified by including a term that accounts for the parameter sensitivity information, such that the rate of convergence and robustness of the algorithm to obtain a consistent solution in the presence of uncertainties in the initial conditions are significantly improved.

References

1.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
2.
Bizeray
,
A. M.
,
Kim
,
J.H.
,
Duncan
,
S.R.
, and
Howey
,
D.A.
,
2018
, “
Identifiability and Parameter Estimation of the Single Particle Lithium-Ion Battery Model
,”
IEEE Trans Control Syst. Technol.
,
27
(
6
), pp.
1862
1877
.
3.
Chen
,
C.-H.
,
Planella
,
F. B.
,
O’regan
,
K.
,
Gastol
,
D.
,
Widanage
,
W. D.
, and
Kendrick
,
E.
,
2020
, “
Development of Experimental Techniques for Parameterization of Multi-scale Lithium-Ion Battery Models
,”
J. Electrochem. Soc.
,
167
(
8
), p.
080534
.
4.
Park
,
S.
,
Kato
,
D.
,
Gima
,
Z.
,
Klein
,
R.
, and
Moura
,
S.
,
2018
, “
Optimal Experimental Design for Parameterization of an Electrochemical Lithium-Ion Battery Model
,”
J. Electrochem. Soc.
,
165
(
7
), pp.
A1309
A1323
.
5.
Forman
,
J. C.
,
Moura
,
S. J.
,
Stein
,
J. L.
, and
Fathy
,
H. K.
,
2012
, “
Genetic Identification and Fisher Identifiability Analysis of the Doyle–Fuller–Newman Model From Experimental Cycling of a LiFePO4 Cell
,”
J. Power Sources
,
210
, pp.
263
275
.
6.
Habte
,
B. T.
, and
Jiang
,
F.
,
2018
, “
Effect of Microstructure Morphology on Li-Ion Battery Graphite Anode Performance: Electrochemical Impedance Spectroscopy Modeling and Analysis
,”
Solid State Ionics
,
314
, pp.
81
91
.
7.
Tsai
,
P.-C.
,
Wen
,
B.
,
Wolfman
,
M.
,
Choe
,
M.-J.
,
Pan
,
M. S.
,
Su
,
L.
,
Thornton
,
K.
,
Cabana
,
J.
, and
Chiang
,
Y.-M.
,
2018
, “
Single-Particle Measurements of Electrochemical Kinetics in NMC and NCA Cathodes for Li-Ion Batteries
,”
Energy Environ. Sci.
,
11
(
4
), pp.
860
871
.
8.
Jin
,
N.
,
Danilov
,
D. L.
,
Van den Hof
,
P. M. J.
, and
Donkers
,
M. C. F.
,
2018
, “
Parameter Estimation of an Electrochemistry-Based Lithium-Ion Battery Model Using a Two-Step Procedure and a Parameter Sensitivity Analysis
,”
Int. J. Energy Res.
,
42
(
7
), pp.
2417
2430
.
9.
Schmidt
,
A. P.
,
Bitzer
,
M.
,
Imre
,
Á. W.
, and
Guzzella
,
L.
,
2010
, “
Experiment-Driven Electrochemical Modeling and Systematic Parameterization for a Lithium-Ion Battery Cell
,”
J. Power Sources
,
195
(
15
), pp.
5071
5080
.
10.
Zhang
,
L.
,
Lyu
,
C.
,
Hinds
,
G.
,
Wang
,
L.
,
Luo
,
W.
,
Zheng
,
J.
, and
Ma
,
K.
,
2014
, “
Parameter Sensitivity Analysis of Cylindrical LiFePO4 Battery Performance Using Multi-Physics Modeling
,”
J. Electrochem. Soc.
,
161
(
5
), pp.
A762
A776
.
11.
Spagnol
,
A.
,
Riche
,
R. L.
, and
Veiga
,
S. D.
,
2019
, “
Global Sensitivity Analysis for Optimization With Variable Selection
,”
SIAM/ASA J. Uncertain. Quantif.
,
7
(
2
), pp.
417
443
.
12.
Brun
,
R.
,
Reichert
,
P.
, and
Künsch
,
H. R.
,
2001
, “
Practical Identifiability Analysis of Large Environmental Simulation Models
,”
Water Resour. Res.
,
37
(
4
), pp.
1015
1030
.
13.
Lin
,
N.
,
Xie
,
X.
,
Schenkendorf
,
R.
, and
Krewer
,
U.
,
2018
, “
Efficient Global Sensitivity Analysis of 3D Multiphysics Model for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
7
), pp.
A1169
A1183
.
14.
Lai
,
Q.
,
Jangra
,
S.
,
Ahn
,
H.J.
,
Kim
,
G.
,
Joe
,
W.T.
, and
Lin
,
X.
,
2019
, “
Analytical Sensitivity Analysis for Battery Electrochemical Parameters
,”
2019 American Control Conference (ACC)
,
Philadelphia, PA
,
July 10
, pp.
890
896
.
15.
Lai
,
Q.
,
Jangra
,
S.
,
Ahn
,
H.J.
,
Kim
,
G.
,
Joe
,
W.T.
, and
Lin
,
X.
,
2020
, “
Analytical Derivation and Analysis of Parameter Sensitivity for Battery Electrochemical Dynamics
,”
J. Power Sources
,
472
, p.
228338
.
16.
Lai
,
Q.
,
Ahn
,
H.J.
,
Kim
,
G.
,
Joe
,
W.T.
, and
Lin
,
X.
,
2020
, “
Optimization of Current Excitation for Identification of Battery Electrochemical Parameters Based on Analytic Sensitivity Expression
,”
2020 American Control Conference (ACC)
,
Denver, CO
,
July 1
, pp.
346
351
.
17.
Panduro
,
M. A.
,
Brizuela
,
C. A.
,
Balderas
,
L. I.
, and
Acosta
,
D. A.
,
2009
, “
A Comparison of Genetic Algorithms, Particle Swarm Optimization and the Differential Evolution Method for the Design of Scannable Circular Antenna Arrays
,”
Prog. Electromag. Res.
,
13
, pp.
171
186
.
18.
Li
,
T.
,
Sun
,
X.
,
Lu
,
Z.
, and
Wu
,
Y.
,
2016
, “
A Novel Multiobjective Optimization Method Based on Sensitivity Analysis
,”
Mat. Prob. Eng.
,
2016
.
Article ID 6012805
, pp.
1
12
.
19.
Noel
,
M. M.
,
2012
, “
A new Gradient Based Particle Swarm Optimization Algorithm for Accurate Computation of Global Minimum
,”
Appl. Soft Comput.
,
12
(
1
), pp.
353
359
.
20.
Cavalca
,
D. L.
, and
Fernandes
,
R. A.
,
2018
, “
Gradient-Based Mechanism For PSO Algorithm: A Comparative Study on Numerical Benchmarks
,”
2018 IEEE Congress on Evolutionary Computation (CEC)
,
Rio de Janeiro, Brazil
,
July 8
, pp.
1
7
.
21.
Varga
,
T.
,
Király
,
A.
, and
Abonyi
,
J.
,
2013
, “Improvement of PSO Algorithm by Memory-Based Gradient Search—Application in Inventory Management,”
Swarm Intelligence and Bio-Inspired Computation
,
Elsevier
,
New York
. pp.
403
422
.
22.
Marcicki
,
J.
,
Canova
,
M.
,
Conlisk
,
A.T.
, and
Rizzoni
,
G.
,
2013
, “
Design and Parametrization Analysis of a Reduced-Order Electrochemical Model of Graphite/LiFePO4 Cells for SOC/SOH Estimation
,”
J. Power Sources
,
237
, pp.
310
324
.
23.
Haran
,
B. S.
,
Popov
,
B. N.
, and
White
,
R. E.
,
1998
, “
Theoretical Analysis of Metal Hydride Electrodes Studies on Equilibrium Potential and Exchange Current Density
,”
J. Electrochem. Soc.
,
145
(
12
), pp.
4082
4090
.
24.
Fan
,
G.
,
Pan
,
K.
,
Canova
,
M.
,
Marcicki
,
J.
, and
Yang
,
X. G.
,
2016
, “
Modeling of Li-Ion Cells for Fast Simulation of High C-Rate and Low Temperature Operations
,”
J. Electrochem. Soc.
,
163
(
5
), pp.
A666
A676
.
25.
Fan
,
G.
,
2016
,
Model Order Reduction of Multi-Dimensional Partial Differential Equations for Electrochemical-Thermal Modeling of Large-Format Lithium-ion Batteries
, Electronic Thesis or Dissertation,
Ohio State University
,
Columbus, OH
.
26.
Ng
,
B.
,
Duan
,
X.
,
Liu
,
F.
,
Agar
,
E.
,
White
,
R. E.
,
Mustain
,
W. E.
, and
Jin
,
X.
,
2020
, “
Investigation of Transport and Kinetic Nonideality in Solid Li-Ion Electrodes Through Deconvolution of Electrochemical Impedance Spectra
,”
J. Electrochem. Soc.
,
167
(
2
), p.
020523
.
27.
Van der Ven
,
A.
, and
Ceder
,
G.
,
2001
, “
Lithium Diffusion Mechanisms in Layered Intercalation Compounds
,”
J. Power Sources
,
97
, pp.
529
531
.
28.
Charbonneau
,
V.
,
Lasia
,
A.
, and
Brisard
,
G.
,
2020
, “
Impedance Studies of Li+ Diffusion in Nickel Manganese Cobalt Oxide (NMC) During Charge/Discharge Cycles
,”
J. Electroanal. Chem.
,
875
, p.
113944
.
29.
Andersson
,
J. A.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi: A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Programm. Comput.
,
11
(
1
), pp.
1
36
.
30.
Golub
,
G.
,
1965
, “
Numerical Methods for Solving Linear Least Squares Problems
,”
Numerische Mathematik
,
7
(
3
), pp.
206
216
.
You do not currently have access to this content.