Skip Nav Destination
Issues
April 2004
This article was originally published in
Journal of Heat Transfer
ISSN 0022-1481
EISSN 1528-8943
Technical Papers
Conduction
Transient Heat Transfer Between a Semi-Infinite Hot Plate and a Flowing Cooling Liquid Film
J. Heat Transfer. April 2004, 126(2): 149–154.
doi: https://doi.org/10.1115/1.1650389
Subtle Issues in the Measurement of the Thermal Conductivity of Vacuum Insulation Panels
J. Heat Transfer. April 2004, 126(2): 155–160.
doi: https://doi.org/10.1115/1.1683674
Topics:
ASTM International
,
Insulation
,
Temperature
,
Thermal conductivity
,
Vacuum
,
Plates (structures)
,
Uncertainty
Evaporation, Boiling, and Condensation
A Method for Assessing the Importance of Body Force on Flow Boiling CHF
J. Heat Transfer. April 2004, 126(2): 161–168.
doi: https://doi.org/10.1115/1.1651532
Topics:
Boiling
,
Critical heat flux
,
Flow (Dynamics)
,
Vapors
Stability and Oscillations in an Evaporating Corner Meniscus
J. Heat Transfer. April 2004, 126(2): 169–178.
doi: https://doi.org/10.1115/1.1652046
Topics:
Corners (Structural elements)
,
Evaporation
,
Film thickness
,
Heat
,
Liquid films
,
Oscillations
,
Stability
,
Pressure
,
Wetting
,
Interferometry
Critical Heat Flux of Steady Boiling for Subcooled Water Jet Impingement on the Flat Stagnation Zone
J. Heat Transfer. April 2004, 126(2): 179–183.
doi: https://doi.org/10.1115/1.1668054
Topics:
Boiling
,
Critical heat flux
,
Heat transfer
,
Nozzles
,
Subcooling
,
Water
,
Nucleate boiling
,
Jets
Forced Convection
Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk
J. Heat Transfer. April 2004, 126(2): 184–192.
doi: https://doi.org/10.1115/1.1652044
Topics:
Disks
,
Flow (Dynamics)
,
Heat transfer
,
Liquid films
,
Lubrication theory
,
Rotating disks
,
Rotation
,
Film thickness
,
Heat transfer coefficients
,
Water
Spatially Resolved Surface Heat Transfer for Parallel Rib Turbulators With 45 Deg Orientations Including Test Surface Conduction Analysis
J. Heat Transfer. April 2004, 126(2): 193–201.
doi: https://doi.org/10.1115/1.1668046
Topics:
Friction
,
Heat conduction
,
Heat flux
,
Heat transfer
,
Reynolds number
,
Flow (Dynamics)
Convective Heat Transfer Near One-Dimensional and Two-Dimensional Wall Temperature Steps
J. Heat Transfer. April 2004, 126(2): 202–210.
doi: https://doi.org/10.1115/1.1650387
Topics:
Boundary layers
,
Heat transfer
,
Temperature
,
Turbulence
,
Wall temperature
,
Convection
,
Boundary-value problems
Heat Transfer Enhancement
Heat Transfer Enhancement Using Shaped Polymer Tubes: Fin Analysis
J. Heat Transfer. April 2004, 126(2): 211–218.
doi: https://doi.org/10.1115/1.1683663
Topics:
Convection
,
Heat transfer
,
Polymers
,
Shapes
,
Temperature distribution
,
Flow (Dynamics)
,
Heat exchangers
,
Fins
,
Temperature
,
Thermal conductivity
Heat and Mass Transfer
A Numerical Model Coupling the Heat and Gas Species’ Transport Processes in a Tubular SOFC
J. Heat Transfer. April 2004, 126(2): 219–229.
doi: https://doi.org/10.1115/1.1667528
Topics:
Flow (Dynamics)
,
Fuel cells
,
Fuels
,
Heat
,
Mass transfer
,
Solid oxide fuel cells
,
Temperature
,
Electrochemical reactions
,
Heating
,
Electrolytes
Heat Transfer in Manufacturing
Combined Effects of Rotating Magnetic Field and Rotating System on the Thermocapillary Instability in the Floating Zone Crystal Growth Process
J. Heat Transfer. April 2004, 126(2): 230–235.
doi: https://doi.org/10.1115/1.1666883
Topics:
Convection
,
Crystal growth
,
Crystals
,
Flow (Dynamics)
,
Magnetic fields
,
Rotation
,
Stability
,
Temperature
,
Magnetohydrodynamics
,
Reynolds number
Investigation of Steady-State Drawing Force and Heat Transfer in Polymer Optical Fiber Manufacturing
J. Heat Transfer. April 2004, 126(2): 236–243.
doi: https://doi.org/10.1115/1.1677420
Topics:
Furnaces
,
Heat transfer
,
Polymers
,
Preforms
,
Temperature
,
Thermal radiation
,
Optical fiber
,
Heating
,
Natural convection
,
Viscosity
Micro/Nanoscale Heat Transfer
On the Group Front and Group Velocity in a Dispersive Medium Upon Refraction From a Nondispersive Medium
J. Heat Transfer. April 2004, 126(2): 244–249.
doi: https://doi.org/10.1115/1.1668035
Topics:
Refraction
,
Waves
,
Vacuum
,
Wave packets
Radiative Heat Transfer
Scale Analysis of Combined Thermal Radiation and Convection Heat Transfer
J. Heat Transfer. April 2004, 126(2): 250–258.
doi: https://doi.org/10.1115/1.1677409
Bubbles, Particles, and Droplets
Experimental Study of Bubble Dynamics on a Micro Heater Induced by Pulse Heating
J. Heat Transfer. April 2004, 126(2): 259–271.
doi: https://doi.org/10.1115/1.1650388
Topics:
Bubbles
,
Heating
,
Nucleation (Physics)
,
Temperature
,
Vapors
,
Pressure
A Leidenfrost Point Model for Impinging Droplets and Sprays
J. Heat Transfer. April 2004, 126(2): 272–278.
doi: https://doi.org/10.1115/1.1652045
Topics:
Bubbles
,
Cavities
,
Drops
,
Nucleation (Physics)
,
Sprays
,
Temperature
,
Vapors
,
Pressure
,
Film boiling
,
Water
Measurement of Temperatures on In-Flight Water Droplets by Laser Induced Fluorescence Thermometry
J. Heat Transfer. April 2004, 126(2): 279–285.
doi: https://doi.org/10.1115/1.1667527
Topics:
Drops
,
Fluorescence
,
Temperature
,
Temperature measurement
,
Water
,
Lasers
,
Emissions
,
Flight
Technical Notes
Spectral Emittance of Particulate Ash-Like Deposits: Theoretical Predictions Compared to Experimental Measurement
J. Heat Transfer. April 2004, 126(2): 286–289.
doi: https://doi.org/10.1115/1.1666885
Topics:
Particle size
,
Particulate matter
,
Wavelength
,
Absorption
,
Emissions
A Model of Heat and Mass Transfer Beneath an Ablating Concrete Surface
J. Heat Transfer. April 2004, 126(2): 290–294.
doi: https://doi.org/10.1115/1.1666884
Topics:
Ablation (Vaporization technology)
,
Concretes
,
Heat
,
Water
,
Evaporation
,
Temperature
,
Spallation (Nuclear physics)
,
Pressure
,
Steel
,
Flow (Dynamics)
Investigation of the Initial Inverse Problem in the Heat Equation
J. Heat Transfer. April 2004, 126(2): 294–296.
doi: https://doi.org/10.1115/1.1666886
Topics:
Heat
,
Heat conduction
,
Inverse problems
,
Temperature
Effect of Double Stratification on Free Convection in a Darcian Porous Medium
J. Heat Transfer. April 2004, 126(2): 297–300.
doi: https://doi.org/10.1115/1.1667525
Topics:
Boundary layers
,
Flow (Dynamics)
,
Mass transfer
,
Natural convection
,
Porous materials
,
Temperature
,
Heat
,
Buoyancy
,
Diffusion (Physics)
Predicting Inlet Temperature Effects on the Pressure-Drop of Heated Porous Medium Channel Flows Using the M-HDD Model
J. Heat Transfer. April 2004, 126(2): 301–303.
doi: https://doi.org/10.1115/1.1667526