Abstract

This paper considers the thermo-convective boundary-layer flow (BLF) of a water–copper mono-nanofluid over a flat vertical surface which is subjected to three types of periodic temperature variations described by the sinusoidal, sawtooth, and triangular waveforms. The temperature of the fluid at the flat surface is greater than the surrounding ambient temperature. The governing equations describing the BLF have been reduced to a non-similar form using an appropriate stream function formulation. The Keller-Box method is used to obtain numerical solution of the boundary-value problem. The effect of the pertinent parameters on the nature of the flow and the heat transfer has been discussed using actual thermophysical data. The results about the shear–stress and heat transfer rate at the surface are presented as well. To study the nature of BLF, the velocity and thermal boundary-layers, the streamline and isotherm plots have been considered, which reveal that the nanoparticle volume-fraction, amplitude of surface temperature variations, and the Grashof number play a pivotal role in enhancing/diminishing heat transfer. The final outcome reveals that the heat transfer is highest for the sinusoidal waveform, followed by that of the triangular and then, the sawtooth. An important inference is that a symmetric periodic temperature distribution at the surface enhances heat transfer more than that of a constant surface-temperature.

References

1.
Choi
,
S. U.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Argonne National Lab.(ANL)
,
IL
, Report No. ANL/MSD/CP-84938; CONF-951135-29.
2.
Eastman
,
J. A.
,
Choi
,
U.
,
Li
,
S.
,
Thompson
,
L.
, and
Lee
,
S.
,
1996
, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
MRS Online Proc. Libr.
,
457
, pp.
3
11
.10.1557/PROC-457-3
3.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
474
480
.10.2514/2.6486
4.
Choi
,
S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F.
, and
Grulke
,
E.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.10.1063/1.1408272
5.
Keblinski
,
P.
,
Phillpot
,
S.
,
Choi
,
S.
, and
Eastman
,
J.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.10.1016/S0017-9310(01)00175-2
6.
Das
,
S. K.
,
Choi
,
S. U.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids–A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.10.1080/01457630600904593
7.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.10.1016/S0017-9310(03)00156-X
8.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
9.
Siddheshwar
,
P.
,
Kanchana
,
C.
,
Kakimoto
,
Y.
, and
Nakayama
,
A.
,
2017
, “
Steady Finite-Amplitude Rayleigh–Bénard Convection in Nanoliquids Using a Two-Phase Model: Theoretical Answer to the Phenomenon of Enhanced Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
1
), p.
012402
.10.1115/1.4034484
10.
Siddheshwar
,
P.
,
Narayana
,
M.
,
Saha
,
R.
, and
Nagouda
,
S. S.
,
2022
, “
A Comparative Study of Thermoconvective Flows of a Newtonian Fluid Over Three Horizontal Undulated Surfaces in a Porous Medium
,”
ASME J. Heat Mass Transfer - Trans. ASME
,
144
(
9
), p.
092701
.10.1115/1.4054803
11.
Ostrach
,
S.
,
1952
, “
An Analysis of Laminar Free-Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the Generating Body Force
,”
National Advisory Committee for Aeronautics, Cleveland
,
OH,
Lewis Flight Propulsion Laboratory, Report No. NACA-TN-2635.
12.
Rees
,
D.
,
1999
, “
The Effect of Steady Streamwise Surface Temperature Variations on Vertical Free Convection
,”
Int. J. Heat Mass Transfer
,
42
(
13
), pp.
2455
2464
.10.1016/S0017-9310(98)00304-4
13.
Roy
,
N. C.
, and
Hossain
,
M.
,
2010
, “
Numerical Solution of a Steady Natural Convection Flow From a Vertical Plate With the Combined Effects of Streamwise Temperature and Species Concentration Variations
,”
Heat Mass Transfer
,
46
(
5
), pp.
509
522
.10.1007/s00231-010-0591-9
14.
Molla
,
M. M.
,
Saha
,
S. C.
, and
Hossain
,
M. A.
,
2011
, “
Radiation Effect on Free Convection Laminar Flow Along a Vertical Flat Plate With Streamwise Sinusoidal Surface Temperature
,”
Math. Comput. Modell.
,
53
(
5–6
), pp.
1310
1319
.10.1016/j.mcm.2010.12.017
15.
Li
,
J.
,
Ingham
,
D.
, and
Pop
,
I.
,
2001
, “
Natural Convection From a Vertical Flat Plate With a Surface Temperature Oscillation
,”
Int. J. Heat Mass Transfer
,
44
(
12
), pp.
2311
2322
.10.1016/S0017-9310(00)00276-3
16.
Motsa
,
S.
,
Awad
,
F.
, and
Khumalo
,
M.
,
2014
, “
Nonlinear Nanofluid Flow Over Heated Vertical Surface With Sinusoidal Wall Temperature Variations
,”
Abstr. Appl. Anal.
,
2014
(
9
), pp.
1
11
.10.1155/2014/408230
17.
Rashad
,
A.
,
Chamkha
,
A. J.
, and
EL-Kabeir
,
S.
,
2016
, “
Natural Convection Flow of a Nanofluid Along a Vertical Plate With Streamwise Temperature Variations
,”
Heat Transfer Res.
,
45
(
6
), pp.
499
514
.10.1002/htj.21173
18.
Chamkha
,
A. J.
,
El-Kabeir
,
S.
, and
Rashad
,
A.
,
2013
, “
Coupled Heat and Mass Transfer by MHD Free Convection Flow Along a Vertical Plate With Streamwise Temperature and Species Concentration Variations
,”
Heat Transfer Res.
,
42
(
2
), pp.
100
110
.10.1002/htj.21033
19.
EL-Zahar
,
E. R.
,
Rashad
,
A. M.
, and
Seddek
,
L. F.
,
2019
, “
The Impact of Sinusoidal Surface Temperature on the Natural Convective Flow of a Ferrofluid Along a Vertical Plate
,”
Mathematics
,
7
(
11
), p.
1014
.10.3390/math7111014
20.
Chandra Roy
,
N.
,
2020
, “
Magnetohydrodynamic Natural Convection Flow of a Nanofluid Due to Sinusoidal Surface Temperature Variations
,”
Phys. Fluids
,
32
(
2
), p.
022003
.10.1063/1.5143516
21.
Imtiaz
,
M.
,
Nazar
,
H.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2019
, “
Effect of Porous Medium in Stagnation Point Flow of Ferrofluid Due to a Variable Convected Thicked Sheet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
11
), p.
112602
.10.1115/1.4044511
22.
Turkyilmazoglu
,
M.
,
2015
, “
Exact Multiple Solutions for the Slip Flow and Heat Transfer in a Converging Channel
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
10
), p.
101301
.10.1115/1.4030307
23.
Siddiqui
,
A. A.
, and
Turkyilmazoglu
,
M.
,
2020
, “
Natural Convection in the Ferrofluid Enclosed in a Porous and Permeable Cavity
,”
Int. Commun. Heat Mass Transfer
,
113
, p.
104499
.10.1016/j.icheatmasstransfer.2020.104499
24.
Keller
,
H. B.
, and
Cebeci
,
T.
,
1971
, “
Accurate Numerical Methods for Boundary Layer Flows i. two Dimensional Laminar Flows
,”
Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics
,
University of California
,
Berkeley
, Sept. 15–19, pp.
92
100
.
25.
Keller
,
H. B.
,
1978
, “
Numerical Methods in Boundary-Layer Theory
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
417
433
.10.1146/annurev.fl.10.010178.002221
26.
Narayana
,
M.
,
Sibanda
,
P.
,
Motsa
,
S.
, and
Siddheshwar
,
P.
,
2012
, “
On Double-Diffusive Convection and Cross Diffusion Effects on a Horizontal Wavy Surface in a Porous Medium
,”
Boundary Value Probl.
,
2012
(
1
), pp.
1
22
.10.1186/1687-2770-2012-88
27.
Sadik
,
S.
,
2021
, “
A Periodic Heating Into Different Layers of a Semi-Infinite Solid
,”
J. Inst. Eng. (India): Ser. C
,
102
(
2
), pp.
545
552
.10.1007/s40032-021-00665-z
28.
Pop
,
I.
, and
Ingham
,
D. B.
,
2001
,
Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media
,
Elsevier
, Oxford, UK.
29.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p.
571
.10.1063/1.1700493
30.
Hamilton
,
R.
, and
Crosser
,
O.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
31.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
, “
Boundary–Layer Equations in Plane Flow; Plate Boundary Layer
,”
Boundary-Layer Theory
,
Springer
,
Berlin/Heidelberg
, pp.
145
164
.
You do not currently have access to this content.