Abstract

Forced convective enhanced heat transfer performance of airflows (50 ≤ Re ≤ 4000, Pr ∼ 0.71) in novel slotted sinusoidal wavy-plate-fins is investigated both experimentally and computationally. The slotted wavy fin core evaluated in the experiments was produced by direct metal laser sintering (DMLS). Compared with the equivalent or nonslotted wavy fin core, also produced by DMLS, while the heat transfer was found to be similar, the pressure drop was reduced by as much as 31%. This very attractively significant enhancement was further explored in a three-dimensional computational analysis. Besides validating experimental results, it is seen that a significant part of pressure loss in plain wavy-fin channels is due to form drag induced by flow recirculation in the trough region. This is shown to be reduced substantially if the fins are slotted at large form drag locations. Their position and size, characterized, respectively, by phase angle (β) and dimensionless slot size (δ), are varied in the simulations to explore their role in the enhanced thermal-hydrodynamic performance. One such modified design exhibits a characteristically unusual performance at low Re, where improvement in heat transfer (+17%) is accompanied by a reduction in pressure loss (–16.8%). Additionally, at high Re, though a slight decline in heat transfer (–7.6%) is evidenced, the pressure drop is nearly cut in half (–46.6%). Moreover, the overall thermal-hydrodynamic performance based on the metric of fixed heat transfer rate and pressure drop constraint shows that ∼15% reduction in the required heat transfer surface area can be achieved with slotted wavy fins.

References

1.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
2.
Manglik
,
R. M.
,
2003
, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
,
A.
Bejan
, and
A. D.
Kraus
, eds., Vol.
14
,
Wiley
,
Hoboken, NJ
.
3.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley, INC
,
Hoboken, NJ
.
4.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2004
, “
Enhanced Heat and Mass Transfer in the New Millennium: A Review of the 2001 Literature
,”
J. Enhanced Heat Transfer
,
11
(
2
), pp.
87
118
.10.1615/JEnhHeatTransf.v11.i2.10
5.
Bergles
,
A. E.
, and
Manglik
,
R. M.
,
2013
, “
Current Progress and New Developments in Enhanced Heat and Mass Transfer
,”
J. Enhanced Heat Transfer
,
20
(
1
), pp.
1
15
.10.1615/JEnhHeatTransf.2013006989
6.
Manglik
,
R. M.
,
2017
, “
Heat Transfer Enhancement
,”
CRC Handbook of Thermal Engineering
,
R. P.
Chhabra
, ed., Vol.
4.16
,
CRC Press
,
Boca Raton, FL
.
7.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.10.1016/0894-1777(94)00096-Q
8.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2019
, “
Three-Dimensional Computations for Forced Convection of Air in Offset-Strip Fin Channels: Effects of Fin Offset Length
,”
ASHRAE Trans.
,
125
(
2
), pp.
172
180
.https://www.ashrae.org/file%20library/technical%20resources/ashrae%20transactions%20and%20conferences%20programs/transactionsvol-125-part-2_toc.pdf
9.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
,
Taylor and Francis
,
Boca Raton, FL
.
10.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
,
2005
, “
Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1439
1449
.10.1016/j.ijheatmasstransfer.2004.10.022
11.
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
, August
2018
, “
Computational Modeling of Low Reynolds Number Air Flows in Wavy-Plate-Fin Channels: Contribution of Pressure Drag on Performance
,”
Proceedings of 16th International Heat Transfer Conference
,
Beijing, China
, Aug. 10–15, Paper No. IHTC16-24221.
12.
Manglik
,
R. M.
,
2018
, “
Enhancement of Convective Heat Transfer
,”
Handbook of Thermal Science and Engineering
,
F. A.
Kulacki
, ed.,
Springer International
,
Cham, Switzerland
, pp.
447
477
.
13.
Vajravelu
,
K.
,
1980
, “
Fluid Flow and Heat Transfer in Horizontal Wavy Channels
,”
Acta Mech.
,
35–35
(
3–4
), pp.
245
258
.10.1007/BF01190400
14.
Nishimura
,
T.
,
Kajimoto
,
Y.
, and
Kawamura
,
Y.
,
1986
, “
Mass Transfer Enhancement in Channels With a Wavy Wall
,”
J. Chem. Eng. Jpn.
,
19
(
2
), pp.
142
144
.10.1252/jcej.19.142
15.
Focke
,
W. W.
, and
Knibbe
,
P. G.
,
1986
, “
Flow Visualization in Parallel-Plate Ducts With Corrugated Walls
,”
J. Fluid Mech.
,
165
(
-1
), pp.
73
77
.10.1017/S0022112086003002
16.
Motamed Ektesabi
,
M. R.
,
Sako
,
M.
, and
Chiba
,
T.
,
1987
, “
Fluid Flow and Heat Transfer in Wavy Sinusoidal Channels (1st Report, Numerical Analysis of Two Dimensional Laminar Flow Field)
,”
Nippon Kikai Gakkai Ronbunshu, Trans. JSME
,
53
(
487
), pp.
722
730
.10.1299/kikaib.53.722
17.
Garg
,
V. K.
, and
Maji
,
P. K.
,
1988
, “
Flow and Heat Transfer in a Sinusoidally Curved Channel
,”
Int. J. Eng. Fluid Mech.
,
1
(
3
), pp.
293
319
.
18.
Nishimura
,
T.
,
Yano
,
K.
,
Yoshino
,
T.
, and
Kawamura
,
Y.
,
1990
, “
Occurrence and Structure of Taylor-Goertler Vortices Induced in Two-Dimensional Wavy Channels for Steady Flow
,”
J. Chem. Eng. Jpn.
,
23
(
6
), pp.
697
703
.10.1252/jcej.23.697
19.
Gschwind
,
P.
,
Regele
,
A.
, and
Kottke
,
V.
,
1995
, “
Sinusoidal Wavy Channels With Taylor-Goertler Vortices
,”
Exp. Thermal Fluid Sci.
,
11
(
3
), pp.
270
275
.10.1016/0894-1777(95)00056-R
20.
Rush
,
T. A.
,
Newell
,
T. A.
, and
Jacobi
,
A. M.
,
1999
, “
An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1541
1553
.10.1016/S0017-9310(98)00264-6
21.
Zhang
,
J.
,
Kundu
,
J.
, and
Manglik
,
R. M.
,
2004
, “
Effect of Fin Waviness and Spacing on the Lateral Vortex Structure and Laminar Heat Transfer in Wavy-Plate-Fin Cores
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1719
1730
.10.1016/j.ijheatmasstransfer.2003.10.006
22.
Metwally
,
H. M.
, and
Manglik
,
R. M.
,
2004
, “
Enhanced Heat Transfer Due to Curvature-Induced Lateral Vortices in Laminar Flows in Sinusoidal Corrugated-Plate Channels
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2283
2292
.10.1016/j.ijheatmasstransfer.2003.11.019
23.
Vyas
,
S.
,
Zhang
,
J.
, and
Manglik
,
R. M.
,
2004
, “
Steady Recirculation and Laminar Forced Convection in a Sinusoidal Wavy Channel
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
4
), pp.
500
500
.10.1115/1.1811719
24.
Vyas
,
S.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2010
, “
Visualization and Characterization of a Lateral Swirl Flow Structure in Sinusoidal Corrugated-Plate Channels
,”
J. Flow Visual. Image Process.
,
17
(
4
), pp.
281
296
.10.1615/JFlowVisImageProc.v17.i4.10
25.
Pham
,
M. V.
,
Plourde
,
F.
, and
Doan
,
S. K.
,
2008
, “
Turbulent Heat and Mass Transfer in Sinusoidal Wavy Channels
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1240
1257
.10.1016/j.ijheatfluidflow.2008.04.002
26.
Sui
,
Y.
,
Teo
,
C. J.
, and
Lee
,
P. S.
,
2012
, “
Direct Numerical Simulation of Fluid Flow and Heat Transfer in Periodic Wavy Channels With Rectangular Cross-Sections
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
73
88
.10.1016/j.ijheatmasstransfer.2011.08.041
27.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2022
, “
Role of Three-Dimensional Swirl in Forced Convection Heat Transfer Enhancement in Wavy-Plate-Fin Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
5
), p.
052001
.10.1115/1.4053456
28.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2021
, “
Characterization and Scaling of Forced Convective Swirl in Sinusoidal Wavy-Plate-Fin Cores of Compact Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
2
), p.
021901
.10.1115/1.4048921
29.
Fujii
,
M.
,
Seshimo
,
Y.
, and
Yamanaka
,
G.
,
1988
, “
Heat Transfer and Pressure Drop of Perforated Surface Heat Exchanger With Passage Enlargement and Contraction
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
135
142
.10.1016/0017-9310(88)90230-X
30.
Huzayyin
,
O. A.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2010
, “
Low Reynolds Number Air-Flow Heat Transfer in Trapezoidally Corrugated Perforated Plate-Fin Ducts
,”
ASHRAE Trans.
,
116
(
2
), pp.
339
346
.https://www.ashrae.org/file%20library/technical%20resources/ashrae%20transactions%20and%20conferences%20programs/2010-albuquerque-toc.pdf
31.
Huzayyin
,
O. A.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2009
, “
Computational Modeling of Convective Heat Transfer in Converging-Diverging Plate Channels With Fin-Wall Perforation
,”
ASME
Paper No. IMECE2009-12416.10.1115/IMECE2009-12416
32.
Kanargi
,
O. B.
,
Lee
,
P. S.
, and
Yap
,
C.
,
2017
, “
A Numerical and Experimental Investigation of Heat Transfer and Fluid Flow Characteristics of a Cross-Connected Alternating Converging–Diverging Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
106
, pp.
449
464
.10.1016/j.ijheatmasstransfer.2016.08.057
33.
Nilpueng
,
K.
,
Ahn
,
H. S.
,
Jerng
,
D.-W.
, and
Wongwises
,
S.
,
2019
, “
Heat Transfer and Flow Characteristics of Sinusoidal Wavy Plate Fin Heat Sink With and Without Crosscut Flow Control
,”
Int. J. Heat Mass Transfer
,
137
, pp.
565
572
.10.1016/j.ijheatmasstransfer.2019.03.114
34.
Chiam
,
Z. L.
,
Lee
,
P. S.
,
Singh
,
P. K.
, and
Mou
,
N.
,
2016
, “
Investigation of Fluid Flow and Heat Transfer in Wavy Micro-Channels With Alternating Secondary Branches
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1316
1330
.10.1016/j.ijheatmasstransfer.2016.05.097
35.
Robinson Fin Machines, 2017,
Quality Custom Folded Fins Conforming to as/ISO-9001
,” Robinson Fin Machines, Kenton, OH, accessed June 15, 2017, https://www.robfin.com/
36.
Norfolk
,
M.
, and
Johnson
,
H.
,
2015
, “
Solid-State Additive Manufacturing for Heat Exchangers
,”
JOM
,
67
(
3
), pp.
655
659
.10.1007/s11837-015-1299-6
37.
Blakey-Milner
,
B.
,
Gradl
,
P.
,
Snedden
,
G.
,
Brooks
,
M.
,
Pitot
,
J.
,
Lopez
,
E.
,
Leary
,
M.
,
Berto
,
F.
, and
du Plessis
,
A.
,
2021
, “
Metal Additive Manufacturing in Aerospace: A Review
,”
Mater. Des.
,
209
, p.
110008
.10.1016/j.matdes.2021.110008
38.
Tabares
,
E.
,
Kitzmantel
,
M.
,
Neubauer
,
E.
,
Jimenez-Morales
,
A.
, and
Tsipas
,
S. A.
,
2022
, “
Extrusion-Based Additive Manufacturing of Ti3SiC2 and Cr2AlC MAX Phases as Candidates for High Temperature Heat Exchangers
,”
J. Eur. Ceram. Soc.
,
42
(
3
), pp.
841
849
.10.1016/j.jeurceramsoc.2021.10.042
39.
Kuehndel
,
J.
,
Kerler
,
B.
, and
Karcher
,
C.
,
2018
, “
Selective Laser Melting in Heat Exchanger Development - Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of Wavy Fins
,”
Heat Mass Transfer
,
54
(
8
), pp.
2187
2193
.10.1007/s00231-018-2352-0
40.
Scheithauer
,
U.
,
Schwarzer
,
E.
,
Moritz
,
T.
, and
Michaelis
,
A.
,
2018
, “
Additive Manufacturing of Ceramic Heat Exchanger: Opportunities and Limits of the Lithography-Based Ceramic Manufacturing (LCM)
,”
J. Mater. Eng. Perform.
,
27
(
1
), pp.
14
20
.10.1007/s11665-017-2843-z
41.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
State-of-the-Art in Heat Exchanger Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
178
, p.
121600
.10.1016/j.ijheatmasstransfer.2021.121600
42.
Niknam
,
S. A.
,
Mortazavi
,
M.
, and
Li
,
D.
,
2021
, “
Additively Manufactured Heat Exchangers: A Review on Opportunities and Challenges
,”
Int. J. Adv. Manuf. Technol.
,
112
(
3–4
), pp.
601
618
.10.1007/s00170-020-06372-w
43.
Baker
,
T. M.
,
Manahan
,
M. P.
,
Lynch
,
S. P.
, and
Reutzel
,
E. W.
,
2022
, “
Effect of Hydraulic Diameter and Surface Roughness on Additively-Manufactured Offset Strip Fin Heat Exchanger Performance
,”
ASME
Paper No. HT2022-80416.10.1115/HT2022-80416
44.
Lin
,
K.-T.
,
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2020
, “
General Correlations for Laminar Flow Friction Loss and Heat Transfer in Plain Rectangular Plate-Fin Cores
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
12
), p.
121801
.10.1115/1.4048091
45.
Xometry
, 2017, “
Direct Metal Laser Sintering (DMLS) Metal 3D Printing
,” Xometry, Derwood, MD, accessed June 15, 2017, https://www.xometry.com/direct-metal-laser-sintering
46.
Webb
,
R. L.
,
2006
, “
Entrance and Exit Losses for Developing Flow in Parallel Plate Channels
,”
Heat Transfer Eng.
,
27
(
10
), pp.
30
35
.10.1080/01457630600904650
47.
Kreith
,
F.
, and
Manglik
,
R. M.
,
2018
,
Principles of Heat Transfer
, 8th ed.,
Cengage Learning
,
Boston, MA
.
48.
Manglik
,
R. M.
,
Huzayyin
,
O. A.
, and
Jog
,
M. A.
,
2011
, “
Fin Effects in Flow Channels of Plate-Fin Compact Heat Exchanger Cores
,”
J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041004
.10.1115/1.4004844
49.
Taylor
,
J.
,
1997
,
Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements
,
University Science Books
,
New York
.
50.
ANSYS Fluent 17.2
,
2016
,
Theory Guide 17.0
,
ANSYS
,
Canonsburg, PA
.
51.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
52.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
2
), pp.
180
186
.10.1115/1.3450666
You do not currently have access to this content.