Abstract

The increase in the heat dissipation rate in heat sinks (HSs), the reduction of the occupied volume and mass, and the elimination of the lower heat transfer areas (LHTAs) behind the pins are the main parameters to be controlled in HSs design. For this purpose, this study is devoted to numerically investigating the effect of the combination between perforation technique and splitters inserts on the heat dissipation and turbulent fluid flow characteristics of pin fins heat sinks (PFHSs). The splitter is located in the back of the pin, and the cylindrical pin fins heat sinks (CPFHSs) are perforated with different pairs of hole numbers. These configurations are named PFHS-0 (without perforation) to PFHS-5. The results obtained for the PFHS-5 show an increase in Nusselt number by 34.91% and a reduction in the thermal resistance by 24.22%, compared with CPFHSs. For the same conditions, the occupied volume and mass of this case are also reduced by 70% and 47.5%, respectively. In addition, the PFHS-5 case ensures the highest hydrothermal performance factor (HTPF) of 1.42 at Re = 8,740.

References

1.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
2.
Zehforoosh
,
A.
, and
Hossainpour
,
S.
,
2010
, “
Numerical Investigation of Pressure Drop Reduction Without Surrendering Heat Transfer Enhancement in Partially Porous Channel
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1649
1662
.10.1016/j.ijthermalsci.2010.05.016
3.
Stark
,
J. R.
,
Sevart
,
C. D.
, and
Bergman
,
T. L.
,
2018
, “
Experimentally Validated Analytical Expressions for the Thermal Resistance of a Novel Composite Fin-Foam Annular Array
,”
Appl. Therm. Eng.
,
131
, pp.
260
269
.10.1016/j.applthermaleng.2017.11.096
4.
Stark
,
J. R.
,
Prasad
,
R.
, and
Bergman
,
T. L.
,
2017
, “
Experimentally Validated Analytical Expressions for the Thermal Efficiencies and Thermal Resistances of Porous Metal Foam-Fins
,”
Int. J. Heat Mass Transfer
,
111
, pp.
1286
1295
.10.1016/j.ijheatmasstransfer.2017.03.041
5.
Haji-Sheikh
,
A.
,
Nield
,
D. A.
, and
Hooman
,
K.
,
2006
, “
Heat Transfer in the Thermal Entrance Region for Flow Through Rectangular Porous Passages
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3004
3015
.10.1016/j.ijheatmasstransfer.2006.01.040
6.
Ghahremannezhad
,
A.
,
Xu
,
H.
,
Alhuyi
,
M.
,
Hossein
,
M.
, and
Vafai
,
K.
,
2019
, “
Effect of Porous Substrates on Thermohydraulic Performance Enhancement of Double Layer Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
131
, pp.
52
63
.10.1016/j.ijheatmasstransfer.2018.11.040
7.
Seo
,
J.
, and
Kim
,
W.
,
2020
, “
Plant Leaf Inspired Evaporative Heat Sink With a Binary Porous Structure
,”
Int. J. Heat Mass Transfer
,
160
, p.
120171
.10.1016/j.ijheatmasstransfer.2020.120171
8.
Bezaatpour
,
M.
, and
Goharkhah
,
M.
,
2019
, “
Three Dimensional Simulation of Hydrodynamic and Heat Transfer Behavior of Magnetite Nano Fluid Flow in Circular and Rectangular Channel Heat Sinks Filled With Porous Media
,”
Powder Technol.
,
344
, pp.
68
78
.10.1016/j.powtec.2018.11.104
9.
Oguntala
,
G.
, and
Abd-alhameed
,
R.
,
2018
, “
Performance of Convective-Radiative Porous Fin Heat Sink Under the Influence of Particle Deposition and Adhesion for Thermal Enhancement of Electronic Components
,”
Karbala Int. J. Mod. Sci.
,
4
(
3
), pp.
297
312
.10.1016/j.kijoms.2018.06.002
10.
Ghahremannezhad
,
A.
, and
Vafai
,
K.
,
2018
, “
Thermal and Hydraulic Performance Enhancement of Microchannel Heat Sinks Utilizing Porous Substrates
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1313
1326
.10.1016/j.ijheatmasstransfer.2018.02.024
11.
Gong
,
L.
,
Li
,
Y.
,
Bai
,
Z.
, and
Xu
,
M.
,
2018
, “
Thermal Performance of Micro-Channel Heat Sink With Metallic Porous/Solid Compound Fin Design
,”
Appl. Therm. Eng.
,
137
, pp.
288
295
.10.1016/j.applthermaleng.2018.03.065
12.
Ambreen
,
T.
, and
Kim
,
M.
,
2018
, “
Effect of Fin Shape on the Thermal Performance of Nanofluid-Cooled Micro Pin-Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
126
, pp.
245
256
.10.1016/j.ijheatmasstransfer.2018.05.164
13.
Ambreen
,
T.
,
Saleem
,
A.
, and
Park
,
C. W.
,
2019
, “
Numerical Analysis of the Heat Transfer and Fluid Flow Characteristics of a Nano Fluid-Cooled Micropin- Fin Heat Sink Using the Eulerian-Lagrangian Approach
,”
Powder Technol.
,
345
, pp.
509
520
.10.1016/j.powtec.2019.01.042
14.
Sohel
,
M. R.
,
Khaleduzzaman
,
S. S.
,
Saidur
,
R.
,
Hepbasli
,
A.
,
Sabri
,
M. F. M.
, and
Mahbubul
,
I. M.
,
2014
, “
An Experimental Investigation of Heat Transfer Enhancement of a Minichannel Heat Sink Using Al2O3 – H2O Nanofluid
,”
Int. J. Heat Mass Transfer
,
74
, pp.
164
172
.10.1016/j.ijheatmasstransfer.2014.03.010
15.
Ho
,
C. J.
, and
Chen
,
W. C.
,
2013
, “
An Experimental Study on Thermal Performance of Al2O3/Water Nanofluid in a Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
516
522
.10.1016/j.applthermaleng.2012.07.037
16.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Chabi
,
A. R.
, and
Salimi
,
M.
,
2014
, “
Performance of Water Based CuO and Al2O3 Nanofluids in a Cu – Be Alloy Heat Sink With Rectangular Microchannels
,”
Energy Convers. Manag.
,
86
, pp.
28
38
.10.1016/j.enconman.2014.05.013
17.
Zohra
,
F.
, and
Si-ameur
,
M.
,
2019
, “
A Comparison of Mixed Convective Heat Transfer Performance of Nanofluids Cooled Heat Sink With Circular Perforated Pin Fin
,”
Appl. Therm. Eng.
,
159
, p.
113819
.10.1016/j.applthermaleng.2019.113819
18.
Zargartalebi
,
M.
, and
Azaiez
,
J.
,
2019
, “
Effects of Nanoparticle Adsorption on Heat Transfer in Random Pin-Based Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
130
, pp.
420
430
.10.1016/j.ijheatmasstransfer.2018.10.109
19.
Ho
,
C. J.
,
Liao
,
J.
,
Li
,
C.
,
Yan
,
W.
, and
Amani
,
M.
,
2019
, “
Experimental Study of Cooling Characteristics of Water-Based Alumina Nano Fluid in a Minichannel Heat Sink,” Case Stud
,”
Therm. Eng.
,
14
, p.
100418
.10.1016/j.csite.2019.100418
20.
Al-Rashed
,
A. A.
,
Shahsavar
,
A.
,
Rasooli
,
O.
,
Moghimi
,
M. A.
,
Karimipour
,
A.
, and
Tran
,
M. D.
,
2019
, “
Numerical Assessment Into the Hydrothermal and Entropy Generation Characteristics of Biological Water-Silver Nano- Fluid in a Wavy Walled Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
104
, pp.
118
126
.10.1016/j.icheatmasstransfer.2019.03.007
21.
Tian
,
M.
,
Rostami
,
S.
,
Aghakhani
,
S.
,
Shahsavar
,
A.
, and
Qi
,
C.
,
2021
, “
A Techno-Economic Investigation of 2D and 3D Configurations of Fins and Their Effects on Heat Sink Efficiency of MHD Hybrid Nanofluid With Slip and Non-Slip Flow
,”
Int. J. Mech. Sci.
,
189
(
11
), p.
105975
.10.1016/j.ijmecsci.2020.105975
22.
Ambreen
,
T.
,
Saleem
,
A.
,
Ali
,
H. M.
,
Shehzad
,
S. A.
, and
Park
,
C. W.
,
2019
, “
Performance Analysis of Hybrid Nano Fluid in a Heat Sink Equipped With Sharp and Streamlined Micro Pin-Fins
,”
Powder Technol.
,
355
, pp.
552
563
.10.1016/j.powtec.2019.07.087
23.
Ghaneifar
,
M.
,
Arasteh
,
H.
,
Mashayekhi
,
R.
,
Rahbari
,
A.
,
Babaei Mahani
,
R.
, and
Talebizadehsardari
,
P.
,
2020
, “
Thermohydraulic Analysis of Hybrid Nanofluid in a Multilayered Copper Foam Heat Sink Employing Local Thermal Non-Equilibrium Condition: Optimization of Layers Thickness
,”
Appl. Therm. Eng.
,
181
, p.
115961
.10.1016/j.applthermaleng.2020.115961
24.
Kumar
,
V.
, and
Sarkar
,
J.
,
2020
, “
Particle Ratio Optimization of Al2O3-MWCNT Hybrid Nanofluid in Minichannel Heat Sink for Best Hydrothermal Performance
,”
Appl. Therm. Eng.
,
165
, p.
114546
.10.1016/j.applthermaleng.2019.114546
25.
Deng
,
Z.
,
Shen
,
J.
, Dai Li
Liu
,
Y.
,
Song
,
Q.
,
Gong
,
W.
,
Li
,
K.
, and
Gong
,
M.
,
2020
, “
Flow and Thermal Analysis of Hybrid Mini-Channel and Slot Jet Array Heat Sink
,”
Appl. Therm. Eng.
,
171
, p.
115063
.10.1016/j.applthermaleng.2020.115063
26.
Yang
,
M.
, and
Cao
,
B.
,
2020
, “
Multi-Objective Optimization of a Hybrid Microchannel Heat Sink Combining Manifold Concept With Secondary Channels
,”
Appl. Therm. Eng.
,
181
, p.
115592
.10.1016/j.applthermaleng.2020.115592
27.
Ansari
,
D.
, and
Kim
,
K.
,
2018
, “
Hotspot Thermal Management Using a Microchannel-Pin Fin Hybrid Heat Sink
,”
Int. J. Therm. Sci.
,
134
, pp.
27
39
.10.1016/j.ijthermalsci.2018.07.043
28.
Huminic
,
G.
, and
Huminic
,
A.
,
2018
, “
Hybrid Nanofluids for Heat Transfer Applications – A State-of-the-Art Review
,”
Int. J. Heat Mass Transfer
,
125
, pp.
82
103
.10.1016/j.ijheatmasstransfer.2018.04.059
29.
Kumar
,
V.
, and
Sarkar
,
J.
,
2020
, “
Experimental Hydrothermal Characteristics of Minichannel Heat Sink Using Various Types of Hybrid Nanofluids
,”
Adv. Powder Technol.
,
31
(
2
), pp.
621
631
.10.1016/j.apt.2019.11.017
30.
Kumar
,
V.
, and
Sarkar
,
J.
,
2019
, “
Numerical and Experimental Investigations on Heat Transfer and Pressure Drop Characteristics of Al2O3 -TiO2 Hybrid Nanofluid in Minichannel Heat Sink With Different Mixture Ratio
,”
Powder Technol.
,
345
, pp.
717
727
.10.1016/j.powtec.2019.01.061
31.
Bayat
,
M.
,
Faridzadeh
,
M. R.
, and
Toghraie
,
D.
,
2018
, “
Investigation of Finned Heat Sink Performance With Nano Enhanced Phase Change Material (NePCM)
,”
Therm. Sci. Eng. Prog.
,
5
(
2017
), pp.
50
59
.10.1016/j.tsep.2017.10.021
32.
Arshad
,
A.
,
Ali
,
H. M.
,
Ali
,
M.
, and
Manzoor
,
S.
,
2017
, “
Thermal Performance of Phase Change Material (PCM) Based Pin-Finned Heat Sinks for Electronics Devices: Effect of Pin Thickness and PCM Volume Fraction
,”
Appl. Therm. Eng.
,
112
, pp.
143
155
.10.1016/j.applthermaleng.2016.10.090
33.
Muhammad
,
H.
,
Arshad
,
A.
,
Jabbal
,
M.
, and
Verdin
,
P. G.
,
2018
, “
Thermal Management of Electronics Devices With PCMs Filled Pin-Fin Heat Sinks: A Comparison
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1199
1204
.10.1016/j.ijheatmasstransfer.2017.10.065
34.
Chen
,
J.
,
Yang
,
D.
,
Jiang
,
J.
,
Ma
,
A.
, and
Song
,
D.
,
2014
, “
Research Progress of Phase Change Materials (PCMs) Embedded With Metal Foam (A Review)
,”
Procedia Mater. Sci.
,
4
, pp.
389
394
.10.1016/j.mspro.2014.07.579
35.
Özonur
,
Y.
,
Mazman
,
M.
,
Paksoy
,
H. Ö.
, and
Evliya
,
H.
,
2006
, “
Microencapsulation of Coco Fatty Acid Mixture for Thermal Energy Storage With Phase Change Material
,”
Int. J. Energy Res.
,
30
(
10
), pp.
741
749
.10.1002/er.1177
36.
Li
,
H.
,
Liao
,
W.
,
Li
,
T.
, and
Chang
,
Y.
,
2017
, “
Application of Vortex Generators to Heat Transfer Enhancement of a Pin-Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
112
, pp.
940
949
.10.1016/j.ijheatmasstransfer.2017.05.032
37.
Yang
,
K.
,
Li
,
S.
,
Youn
,
I.
,
Chien
,
K.
,
Hu
,
R.
, and
Wang
,
C.
,
2010
, “
An Experimental Investigation of Air Cooling Thermal Module Using Various Enhancements at Low Reynolds Number Region
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5675
5681
.10.1016/j.ijheatmasstransfer.2010.08.015
38.
Zhang
,
J.
,
Jia
,
L.
,
Yang
,
W.
,
Taler
,
J.
, and
Oclon
,
P.
,
2019
, “
Numerical Analysis and Parametric Optimization on Flow and Heat Transfer of a Microchannel With Longitudinal Vortex Generators
,”
Int. J. Therm. Sci.
,
141
, pp.
211
221
.10.1016/j.ijthermalsci.2019.03.036
39.
Huang
,
C.
, and
Chiang
,
P.
,
2016
, “
An Inverse Study to Design the Optimal Shape and Position for Delta Winglet Vortex Generators of Pin- Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
109
, pp.
374
385
.10.1016/j.ijthermalsci.2016.06.018
40.
Al-asadi
,
M. T.
,
Al-damook
,
A.
, and
Wilson
,
M. C. T.
,
2018
, “
Assessment of Vortex Generator Shapes and Pin Fin Perforations for Enhancing Water-Based Heat Sink Performance
,”
Int. Commun. Heat Mass Transfer
,
91
(
2017
), pp.
1
10
.10.1016/j.icheatmasstransfer.2017.11.002
41.
Lu
,
G.
, and
Zhai
,
X.
,
2019
, “
Analysis on Heat Transfer and Pressure Drop of a Microchannel Heat Sink With Dimples and Vortex Generators
,”
Int. J. Therm. Sci.
,
145
(
2018
), p.
105986
.10.1016/j.ijthermalsci.2019.105986
42.
Al-damook
,
A.
,
Kapur
,
N.
,
Summers
,
J. L.
, and
Thompson
,
H. M.
,
2015
, “
An Experimental and Computational Investigation of Thermal Air Flows Through Perforated Pin Heat Sinks
,”
Appl. Therm. Eng.
,
89
, pp.
365
376
.10.1016/j.applthermaleng.2015.06.036
43.
Sahin
,
B.
, and
Demir
,
A.
,
2008
, “
Performance Analysis of a Heat Exchanger Having Perforated Square Fins
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
621
632
.10.1016/j.applthermaleng.2007.04.003
44.
Tijani
,
A. S.
, and
Jaffri
,
N. B.
,
2018
, “
Thermal Analysis of Perforated Pin-Fins Heat Sink Under Forced Convection Pin-Fins Condition
,”
Procedia Manuf.
,
24
, pp.
290
298
.10.1016/j.promfg.2018.06.025
45.
Sahel
,
D.
,
Ameur
,
H.
,
Benzeguir
,
R.
, and
Kamla
,
Y.
,
2016
, “
Enhancement of Heat Transfer in a Rectangular Channel With Perforated Baffles
,”
Appl. Therm. Eng.
,
101
, pp.
156
164
.10.1016/j.applthermaleng.2016.02.136
46.
Shaeri
,
M. R.
, and
Bonner
,
R.
,
2017
, “
Heat Transfer and Pressure Drop in Laterally Perforated- Finned Heat Sinks Across Di Ff Erent Flow Regimes
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
220
227
.10.1016/j.icheatmasstransfer.2017.07.022
47.
Shaeri
,
M. R.
, and
Bonner
,
R.
,
2017
, “
Laminar Forced Convection Heat Transfer From Laterally Perforated-Finned Heat Sinks
,”
Appl. Therm. Eng.
,
116
, pp.
406
418
.10.1016/j.applthermaleng.2016.12.103
48.
Shaeri
,
M. R.
,
Yaghoubi
,
M.
, and
Jafarpur
,
K.
,
2009
, “
Heat Transfer Analysis of Lateral Perforated Fin Heat Sinks
,”
Appl. Energy
,
86
(
10
), pp.
2019
2029
.10.1016/j.apenergy.2008.12.029
49.
Chingulpitak
,
S.
,
Seon
,
H.
,
Godson
,
L.
, and
Wongwises
,
S.
,
2019
, “
Fluid Flow and Heat Transfer Characteristics of Heat Sinks With Laterally Perforated Plate Fins
,”
Int. J. Heat Mass Transfer
,
138
, pp.
293
303
.10.1016/j.ijheatmasstransfer.2019.04.027
50.
Shaeri
,
M. R.
, and
Bonner
,
R. W.
,
2019
, “
Analytical Heat Transfer Model for Laterally Perforated-Finned Heat Sinks
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1164
1173
.10.1016/j.ijheatmasstransfer.2018.11.138
51.
Dastbelaraki
,
A. H.
,
Yaghoubi
,
M.
,
Tavakol
,
M. M.
, and
Rahmatmand
,
A.
,
2018
, “
Numerical Analysis of Convection Heat Transfer From an Array of Perforated Fins Using the Reynolds Averaged Navier – Stokes Equations and Large-Eddy Simulation Method
,”
Appl. Math. Model
,
63
, pp.
660
687
.10.1016/j.apm.2018.06.005
52.
Al-sallami
,
W.
,
Al-damook
,
A.
, and
Thompson
,
H. M.
,
2017
, “
A Numerical Investigation of the Thermal-Hydraulic Characteristics of Perforated Plate Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
121
(
2017
), pp.
266
277
.10.1016/j.ijthermalsci.2017.07.022
53.
Shaeri
,
M. R.
, and
Jen
,
T.
,
2012
, “
The Effects of Perforation Sizes on Laminar Heat Transfer Characteristics of an Array of Perforated Fins
,”
Energy Convers. Manag.
,
64
, pp.
328
334
.10.1016/j.enconman.2012.05.002
54.
Shaeri
,
M. R.
, and
Jen
,
T.
,
2012
, “
Turbulent Heat Transfer Analysis of a Three- Dimensional Array of Perforated Fins Due to Changes in Perforation Sizes
,”
Numer. Heat Transfer
,
7782
, pp.
807
822
.10.1080/10407782.2012.671046
55.
Ismail
,
F.
,
Reza
,
M. O.
,
Zobaer
,
M. A.
, and
Ali
,
M.
,
2013
, “
Numerical Investigation of Turbulent Heat Convection From Solid and Longitudinally Perforated Rectangular Fins
,”
Procedia Eng.
,
56
, pp.
497
502
.10.1016/j.proeng.2013.03.152
56.
Sundar
,
S.
,
Song
,
G.
,
Zeeshan
,
M.
,
Jayakumar
,
J. S.
, and
Yook
,
S.
,
2019
, “
Performance Investigation of Radial Heat Sink With Circular Base and Perforated Staggered Fins
,”
Int. J. Heat Mass Transfer
,
143
, p.
118526
.10.1016/j.ijheatmasstransfer.2019.118526
57.
Li
,
B.
,
Jeon
,
S.
, and
Byon
,
C.
,
2016
, “
Investigation of Natural Convection Heat Transfer Around a Radial Heat Sink With a Perforated Ring
,”
Int. J. Heat Mass Transfer
,
97
, pp.
705
711
.10.1016/j.ijheatmasstransfer.2016.02.058
58.
Sahin
,
B.
, and
Demir
,
A.
,
2008
, “
Thermal Performance Analysis and Optimum Design Parameters of Heat Exchanger Having Perforated Pin Fins
,”
Energy Convers. Manag.
,
49
(
6
), pp.
1684
1695
.10.1016/j.enconman.2007.11.002
59.
Elsayed
,
M. L.
, and
Mesalhy
,
O.
,
2015
, “
Studying the Performance of Solid/Perforated Pin-Fin Heat Sinks Using Entropy Generation Minimization
,”
Heat Mass Transfer
,
51
(
5
), pp.
691
702
.10.1007/s00231-014-1451-9
60.
Ibrahim
,
T. K.
,
Al-sammarraie
,
A. T.
,
Al-taha
,
W. H.
,
Reza
,
M.
,
Al-jethelah
,
M.
,
Abdalla
,
A. N.
, and
Tao
,
H.
,
2019
, “
Experimental and Numerical Investigation of Heat Transfer Augmentation in Heat Sinks Using Perforation Technique
,”
Appl. Therm. Eng.
,
160
, p.
113974
.10.1016/j.applthermaleng.2019.113974
61.
Awasarmol
,
U. V.
, and
Pise
,
A. T.
,
2015
, “
An Experimental Investigation of Natural Convection Heat Transfer Enhancement From Perforated Rectangular Fins Array at Different Inclinations
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
145
154
.10.1016/j.expthermflusci.2015.04.008
62.
Alessa
,
A.
,
M.
,
Maqableh
,
A.
, and
Ammourah
,
S.
,
2009
, “
Enhancement of Natural Convection Heat Transfer From a Fin by Rectangular Perforations With Aspect Ratio of Two
,”
Int. J. Phys. Sci.
,
4
(
10
), pp.
540
547
.https://academicjournals.org/journal/IJPS/article-fulltext-pdf/54E68EA19486
63.
Shaeri
,
M. R.
, and
Yaghoubi
,
M.
,
2009
, “
Thermal Enhancement From Heat Sinks by Using Perforated Fins
,”
Energy Convers. Manag.
,
50
(
5
), pp.
1264
1270
.10.1016/j.enconman.2009.01.021
64.
Alessa
,
A. H.
,
Al-widyan
,
M. I.
, and
Jian-zhong
,
C. L. I. N.
,
2008
, “
Enhancement of Natural Convection Heat Transfer From a Fin by Triangular Perforation of Bases Parallel and Toward Its Tip
,”
Appl. Math. Mech.
,
29
(
8
), pp.
1033
1044
.10.1007/s10483-008-0807-x
65.
Chin
,
S.-B.
,
Foo
,
J.
,
Lai
,
Y.
, and
Yong
,
T. K.
,
2013
, “
Forced Convective Heat Transfer Enhancement With Perforated Pin Fins
,”
Heat Mass Transfer
,
49
(
10
), pp.
1447
1458
.10.1007/s00231-013-1186-z
66.
Tariq
,
A.
,
Altaf
,
K.
,
Ahmad
,
S. W.
,
Hussain
,
G.
, and
Ratlamwala
,
T. A. H.
,
2021
, “
Comparative Numerical and Experimental Analysis of Thermal and Hydraulic Performance of Improved Plate Fin Heat Sinks
,”
Appl. Therm. Eng.
,
182
, p.
115949
.10.1016/j.applthermaleng.2020.115949
67.
Al-damook
,
A.
,
Kapur
,
N.
,
Summers
,
J. L.
, and
Thompson
,
H. M.
,
2016
, “
Computational Design and Optimisation of Pin Fin Heat Sinks With Rectangular Perforations
,”
Appl. Therm. Eng.
,
105
, pp.
691
703
.10.1016/j.applthermaleng.2016.03.070
68.
Sahel
,
D.
,
Bellahcene
,
L.
,
Yousfi
,
A.
, and
Subasi
,
A.
,
2021
, “
Numerical Investigation and Optimization of a Heat Sink Having Hemispherical Pin Fins
,”
Int. Commun. Heat Mass Transfer
,
122
, p.
105133
.10.1016/j.icheatmasstransfer.2021.105133
You do not currently have access to this content.