Abstract
An exact transient analytical solution of the temperature fields and heat fluxes for the modified transient plane source (MTPS) method is presented. The MTPS sensor is made of a thin disk with a heater/sensor and a heated guard ring on its surface, providing a one-dimensional heat flow to a semi-infinite sample in contact with its surface. The MTPS sensor measures the thermal effusivity of the sample. Two different solutions are derived, one is in the form of an infinite series with no thermal resistance, and the other is in integral form and includes thermal resistance between the MTPS sensor surface and the measured sample. The theoretical model is supplemented by experimental results.
References
1.
Emanuel
,
M.
, 2006
, “
Effusivity Sensor Package (ESP) System for Process Monitoring and Control
,” Thermal Conductivity 2/Thermal Expansion 16
,
DESTech Publications
, Lancaster, PA, pp. 256
–268
.2.
Mathis
,
N. E.
, 2000
, “
New Transient Non-Destructive Technique Measures Thermal Effusivity and Diffusivity
,” Thermal Conductivity 25/Thermal Expansion 13
,
C. U. D.
Morelli
, ed.,
Technomic Publishing Co
, Lancaster, PA, pp. 1
–14
.3.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959
, Conduction of Heat in Solids
,
Oxford Science Publications, Clarendon Press
, Oxford, NY.4.
ASTM
, 2016
, “
Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument
,” ASTM International, West Conshohocken, PA, Standard No. ASTM D7984-16
.https://www.astm.org/d7984-21.html5.
Mishra
,
R.
,
Wiener
,
J.
,
Militky
,
J.
,
Petru
,
M.
,
Tomkova
,
B.
, and
Novotna
,
J.
, 2020
, “
Bio-Composites Reinforced With Natural Fibers: Comparative Analysis of Thermal, Static and Dynamic-Mechanical Properties
,” Fiber Polym.
,
21
(3
), pp. 619
–627
.10.1007/s12221-020-9804-06.
Graves
,
J. E.
,
Latvytė
,
E.
,
Greenwood
,
A.
, and
Emekwuru
,
N. G.
, 2019
, “
Ultrasonic Preparation, Stability and Thermal Conductivity of a Capped Copper-Methanol Nanofluid
,” Ultrason. Sonochem.
,
55
, pp. 25
–31
.10.1016/j.ultsonch.2019.02.0287.
Huang
,
J.
,
Zhu
,
Y.
,
Xu
,
L.
,
Chen
,
J.
,
Jiang
,
W.
, and
Nie
,
X.
, 2016
, “
Massive Enhancement in the Thermal Conductivity of Polymer Composites by Trapping Graphene at the Interface of a Polymer Blend
,” Compos. Sci. Technol.
,
129
, pp. 160
–165
.10.1016/j.compscitech.2016.04.0298.
Rohani
,
H.
,
Badakhsh
,
A.
, and
Park
,
C. W.
, 2019
, “
Thermal Performance of Modified Polymeric Heat sinks as an Alternative for Aluminum in Heat Rejection Systems
,” Appl. Therm. Eng.
,
159
, p. 113823
.10.1016/j.applthermaleng.2019.1138239.
Wiktorski
,
E.
,
Cobbah
,
C.
,
Sui
,
D.
, and
Khalifeh
,
M.
, 2019
, “
Experimental Study of Temperature Effects on Wellbore Material Properties to Enhance Temperature Profile Modeling for Production Wells
,” J. Petrol Sci. Eng.
,
176
, pp. 689
–701
.10.1016/j.petrol.2019.01.10210.
Williams
,
T.
,
Nguyen
,
B.
, and
Fuchs
,
W.
, 2020
, “
Polyphenylsulfone-hBN Composite Insulation
,” IEEE Third International Conference on Dielectrics (ICD)
, IEEE, Piscataway, NJ, July 5–31, pp. 541
–545
.10.1109/ICD46958.2020.934191011.
Masood
,
R.
,
Hafsa
,
J.
, and
Khubaib
,
M. A.
, 2020
, “
Development of Knitted Vest Fabrics for Human Body Thermoregulation
,” J Therm. Anal. Calorim.
,
139
(1
), pp. 159
–167
.10.1007/s10973-019-08430-212.
Mikhaylov
,
A. A.
,
Sladkevich
,
S.
,
Medvedev
,
A. G.
,
Prikhodchenko
,
P. V.
,
Gun
,
J.
,
Sakharov
,
K. A.
,
Xu
,
Z. J.
,
Kulish
,
V.
,
Nikolaev
,
V. A.
, and
Lev
,
O.
, 2020
, “
Enhanced Thermal Buffering of Phase Change Materials by the Intramicrocapsule Sub per Mille CNT Dopant
,” ACS Appl. Mater. Interfaces
,
12
(14
), pp. 16227
–16235
.10.1021/acsami.9b2120513.
Thomas
,
P. H.
, 1957
, “
Some Conduction Problems in the Heating of Small Areas on Large Solids
,” Quart. J Mech. Appl. Math
,
10
(4
), pp. 482
–493
.10.1093/qjmam/10.4.48214.
Norminton
,
E. J.
, and
Blackwell
,
J. H.
, 1964
, “
Transient Heat Flow From Constant Temperature Spheroids and the Thin Circular Disk
,” Quart. J. Mech. Appl. Math
,
17
(1
), pp. 65
–72
.10.1093/qjmam/17.1.6515.
Blackwell
,
J. H.
, 1972
, “
Transient Heat Flow From a Thin Circular Disk – Small-Time Solution
,” J. Aust. Math. Soc.
,
14
(4
), pp. 433
–442
.10.1017/S144678870001106X16.
Keltner
,
N. R.
, 1973
, “
Transient Heat Flow in Half-Space Due to an Isothermal Disk on the Surface
,” ASME J. Heat Transfer
,
95
(3
), pp. 412
–414
.10.1115/1.345007617.
Schneider
,
G.
,
Strong
,
A.
, and
Yovanovich
,
M.
, 1975
, “
Transient Heat Flow From a Thin Circular Disk
,” AIAA, American Institute of Aeronautics and Astronautics
, Reston, VA, May 27–29, pp. 419–426.10.2514/6.1975-70718.
Beck
,
J.
, 1979
, “
Closed-Form Exact Solution for the Average Transient Temperature of a Circular Region Within a Semi-Infinite Body Heated by a Disk Heat Source
,” AIAA, 17th Aerospace Sciences Meeting
, American Institute of Aeronautics and Astronautics, Reston, VA, Jan. 15–17.10.2514/6.1979-17519.
Beck
,
J. V.
, 1981
, “
Transient Temperatures in a Semi-Infinite Cylinder Heated by a Disk Heat Source
,” Int. J. Heat Mass Transfer
,
24
(10
), pp. 1631
–1640
.10.1016/0017-9310(81)90071-520.
Beck
,
J. V.
, 1981
, “
Large Time Solutions for Temperatures in a Semi-Infinite Body With a Disk Heat Source
,” Int. J. Heat Mass Transfer
,
24
(1
), pp. 155
–164
.10.1016/0017-9310(81)90104-621.
Pinsker
,
V. A.
, 2006
, “
Unsteady-State Temperature Field in a Semi-Infinite Body Heated by a Disk Surface Heat Source
,” High Temp.
,
44
(1
), pp. 129
–138
.10.1007/s10740-006-0015-122.
van der Tempel
,
L.
, 2016
, “
Temperature Solution for Transient Heat Conduction in a Thin Bilayer Between Semi-Infinite Media in Thermal Effusivity Measurement
,” ASME J. Heat Transfer
,
138
(5
), p. 051301
.10.1115/1.403243423.
Mersman
,
W. A.
, 1943
, “
Heat Conduction in an Infinite Composite Solid With an Interface Resistance
,” Trans. Amer. Math. Soc.
,
53
(1
), pp. 14
–24
.10.1090/S0002-9947-1943-0007561-424.
Schaaf
,
S. A.
, 1947
, “
On the Superposition of a Heat Source and Contact Resistance
,” Q. Appl. Math.
,
5
(1
), pp. 107
–111
.10.1090/qam/2070025.
Holm
,
R.
, 1948
, “
Calculation of the Temperature Development in a Contact Heated in the Contact Surface, and Application to the Problem of the Temperature Rise in a Sliding Contact
,” J. Appl. Phys.
,
19
(4
), pp. 361
–366
.10.1063/1.171507226.
Oosterkamp
,
W. J.
, 1948
, “
Calculation of the Temperature Development in a Contact Heated in the Contact Surface, and Application to the Problem of the Temperature in a Sliding Contact
,” J. Appl. Phys.
,
19
(12
), pp. 1180
–1181
.10.1063/1.171504227.
Emanuel
,
M.
,
Bhouri
,
M.
,
Furlotte
,
J.
,
Groulx
,
D.
, and
Maassen
,
J.
, 2019
, “
Temperature Fields Generated by a Circular Heat Source (CHS) in an Infinite Isotropic Medium: Treatment of Contact Resistances With Application to Thin Films
,” Int. J. Heat Mass Transfer
,
137
, pp. 677
–689
.10.1016/j.ijheatmasstransfer.2019.03.11528.
Emanuel
,
M.
,
Bhouri
,
M.
,
Ackermann
,
S.
,
Groulx
,
D.
, and
Maassen
,
J.
, 2018
, “
Temperature Fields Generated by a Circular Heat Source (CHS) in an Infinite Medium: Analytical Derivation and Comparison to Finite Element Modeling
,” Int. J. Heat Mass Transfer
,
126
, pp. 1265
–1274
.10.1016/j.ijheatmasstransfer.2018.05.10229.
Emanuel
,
M.
, and
Emanuel
,
A.
, 2019
, “
Temperature Fields Generated by a Circular Heat Source: Solution of a Composite Solid of Two Different Isotropic Semi-Infinite Media
,” ASME J. Heat Transfer
,
141
(12
), p. 121401.10.1115/1.404482930.
Jeffrey
,
A.
, 2005
, Complex Analysis and Applications
,
CRC Press
, Boca Raton, FL.31.
de Monte
,
F.
,
Beck
,
J. V.
, and
Amos
,
D. E.
, 2008
, “
Diffusion of Thermal Disturbances in Two-Dimensional Cartesian Transient Heat Conduction
,” Int. J. Heat Mass Transfer
,
51
(25–26
), pp. 5931
–5941
. dec10.1016/j.ijheatmasstransfer.2008.05.01532.
Poularikas
,
A. D.
, ed., 2000
, The Transforms and Applications Handbook
, 2nd ed.,
CRC Press LLC
,
Boca Raton, FL
.Copyright © 2022 by ASME
You do not currently have access to this content.