Abstract

An exact transient analytical solution of the temperature fields and heat fluxes for the modified transient plane source (MTPS) method is presented. The MTPS sensor is made of a thin disk with a heater/sensor and a heated guard ring on its surface, providing a one-dimensional heat flow to a semi-infinite sample in contact with its surface. The MTPS sensor measures the thermal effusivity of the sample. Two different solutions are derived, one is in the form of an infinite series with no thermal resistance, and the other is in integral form and includes thermal resistance between the MTPS sensor surface and the measured sample. The theoretical model is supplemented by experimental results.

References

1.
Emanuel
,
M.
,
2006
, “
Effusivity Sensor Package (ESP) System for Process Monitoring and Control
,”
Thermal Conductivity 2/Thermal Expansion 16
,
DESTech Publications
, Lancaster, PA, pp.
256
268
.
2.
Mathis
,
N. E.
,
2000
, “
New Transient Non-Destructive Technique Measures Thermal Effusivity and Diffusivity
,”
Thermal Conductivity 25/Thermal Expansion 13
,
C. U. D.
Morelli
, ed.,
Technomic Publishing Co
, Lancaster, PA, pp.
1
14
.
3.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Oxford Science Publications, Clarendon Press
, Oxford, NY.
4.
ASTM
,
2016
, “
Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D7984-16
.https://www.astm.org/d7984-21.html
5.
Mishra
,
R.
,
Wiener
,
J.
,
Militky
,
J.
,
Petru
,
M.
,
Tomkova
,
B.
, and
Novotna
,
J.
,
2020
, “
Bio-Composites Reinforced With Natural Fibers: Comparative Analysis of Thermal, Static and Dynamic-Mechanical Properties
,”
Fiber Polym.
,
21
(
3
), pp.
619
627
.10.1007/s12221-020-9804-0
6.
Graves
,
J. E.
,
Latvytė
,
E.
,
Greenwood
,
A.
, and
Emekwuru
,
N. G.
,
2019
, “
Ultrasonic Preparation, Stability and Thermal Conductivity of a Capped Copper-Methanol Nanofluid
,”
Ultrason. Sonochem.
,
55
, pp.
25
31
.10.1016/j.ultsonch.2019.02.028
7.
Huang
,
J.
,
Zhu
,
Y.
,
Xu
,
L.
,
Chen
,
J.
,
Jiang
,
W.
, and
Nie
,
X.
,
2016
, “
Massive Enhancement in the Thermal Conductivity of Polymer Composites by Trapping Graphene at the Interface of a Polymer Blend
,”
Compos. Sci. Technol.
,
129
, pp.
160
165
.10.1016/j.compscitech.2016.04.029
8.
Rohani
,
H.
,
Badakhsh
,
A.
, and
Park
,
C. W.
,
2019
, “
Thermal Performance of Modified Polymeric Heat sinks as an Alternative for Aluminum in Heat Rejection Systems
,”
Appl. Therm. Eng.
,
159
, p.
113823
.10.1016/j.applthermaleng.2019.113823
9.
Wiktorski
,
E.
,
Cobbah
,
C.
,
Sui
,
D.
, and
Khalifeh
,
M.
,
2019
, “
Experimental Study of Temperature Effects on Wellbore Material Properties to Enhance Temperature Profile Modeling for Production Wells
,”
J. Petrol Sci. Eng.
,
176
, pp.
689
701
.10.1016/j.petrol.2019.01.102
10.
Williams
,
T.
,
Nguyen
,
B.
, and
Fuchs
,
W.
,
2020
, “
Polyphenylsulfone-hBN Composite Insulation
,”
IEEE Third International Conference on Dielectrics (ICD)
, IEEE, Piscataway, NJ, July 5–31, pp.
541
545
.10.1109/ICD46958.2020.9341910
11.
Masood
,
R.
,
Hafsa
,
J.
, and
Khubaib
,
M. A.
,
2020
, “
Development of Knitted Vest Fabrics for Human Body Thermoregulation
,”
J Therm. Anal. Calorim.
,
139
(
1
), pp.
159
167
.10.1007/s10973-019-08430-2
12.
Mikhaylov
,
A. A.
,
Sladkevich
,
S.
,
Medvedev
,
A. G.
,
Prikhodchenko
,
P. V.
,
Gun
,
J.
,
Sakharov
,
K. A.
,
Xu
,
Z. J.
,
Kulish
,
V.
,
Nikolaev
,
V. A.
, and
Lev
,
O.
,
2020
, “
Enhanced Thermal Buffering of Phase Change Materials by the Intramicrocapsule Sub per Mille CNT Dopant
,”
ACS Appl. Mater. Interfaces
,
12
(
14
), pp.
16227
16235
.10.1021/acsami.9b21205
13.
Thomas
,
P. H.
,
1957
, “
Some Conduction Problems in the Heating of Small Areas on Large Solids
,”
Quart. J Mech. Appl. Math
,
10
(
4
), pp.
482
493
.10.1093/qjmam/10.4.482
14.
Norminton
,
E. J.
, and
Blackwell
,
J. H.
,
1964
, “
Transient Heat Flow From Constant Temperature Spheroids and the Thin Circular Disk
,”
Quart. J. Mech. Appl. Math
,
17
(
1
), pp.
65
72
.10.1093/qjmam/17.1.65
15.
Blackwell
,
J. H.
,
1972
, “
Transient Heat Flow From a Thin Circular Disk – Small-Time Solution
,”
J. Aust. Math. Soc.
,
14
(
4
), pp.
433
442
.10.1017/S144678870001106X
16.
Keltner
,
N. R.
,
1973
, “
Transient Heat Flow in Half-Space Due to an Isothermal Disk on the Surface
,”
ASME J. Heat Transfer
,
95
(
3
), pp.
412
414
.10.1115/1.3450076
17.
Schneider
,
G.
,
Strong
,
A.
, and
Yovanovich
,
M.
,
1975
, “
Transient Heat Flow From a Thin Circular Disk
,”
AIAA, American Institute of Aeronautics and Astronautics
, Reston, VA, May 27–29, pp. 419–426.10.2514/6.1975-707
18.
Beck
,
J.
,
1979
, “
Closed-Form Exact Solution for the Average Transient Temperature of a Circular Region Within a Semi-Infinite Body Heated by a Disk Heat Source
,”
AIAA, 17th Aerospace Sciences Meeting
, American Institute of Aeronautics and Astronautics, Reston, VA, Jan. 15–17.10.2514/6.1979-175
19.
Beck
,
J. V.
,
1981
, “
Transient Temperatures in a Semi-Infinite Cylinder Heated by a Disk Heat Source
,”
Int. J. Heat Mass Transfer
,
24
(
10
), pp.
1631
1640
.10.1016/0017-9310(81)90071-5
20.
Beck
,
J. V.
,
1981
, “
Large Time Solutions for Temperatures in a Semi-Infinite Body With a Disk Heat Source
,”
Int. J. Heat Mass Transfer
,
24
(
1
), pp.
155
164
.10.1016/0017-9310(81)90104-6
21.
Pinsker
,
V. A.
,
2006
, “
Unsteady-State Temperature Field in a Semi-Infinite Body Heated by a Disk Surface Heat Source
,”
High Temp.
,
44
(
1
), pp.
129
138
.10.1007/s10740-006-0015-1
22.
van der Tempel
,
L.
,
2016
, “
Temperature Solution for Transient Heat Conduction in a Thin Bilayer Between Semi-Infinite Media in Thermal Effusivity Measurement
,”
ASME J. Heat Transfer
,
138
(
5
), p.
051301
.10.1115/1.4032434
23.
Mersman
,
W. A.
,
1943
, “
Heat Conduction in an Infinite Composite Solid With an Interface Resistance
,”
Trans. Amer. Math. Soc.
,
53
(
1
), pp.
14
24
.10.1090/S0002-9947-1943-0007561-4
24.
Schaaf
,
S. A.
,
1947
, “
On the Superposition of a Heat Source and Contact Resistance
,”
Q. Appl. Math.
,
5
(
1
), pp.
107
111
.10.1090/qam/20700
25.
Holm
,
R.
,
1948
, “
Calculation of the Temperature Development in a Contact Heated in the Contact Surface, and Application to the Problem of the Temperature Rise in a Sliding Contact
,”
J. Appl. Phys.
,
19
(
4
), pp.
361
366
.10.1063/1.1715072
26.
Oosterkamp
,
W. J.
,
1948
, “
Calculation of the Temperature Development in a Contact Heated in the Contact Surface, and Application to the Problem of the Temperature in a Sliding Contact
,”
J. Appl. Phys.
,
19
(
12
), pp.
1180
1181
.10.1063/1.1715042
27.
Emanuel
,
M.
,
Bhouri
,
M.
,
Furlotte
,
J.
,
Groulx
,
D.
, and
Maassen
,
J.
,
2019
, “
Temperature Fields Generated by a Circular Heat Source (CHS) in an Infinite Isotropic Medium: Treatment of Contact Resistances With Application to Thin Films
,”
Int. J. Heat Mass Transfer
,
137
, pp.
677
689
.10.1016/j.ijheatmasstransfer.2019.03.115
28.
Emanuel
,
M.
,
Bhouri
,
M.
,
Ackermann
,
S.
,
Groulx
,
D.
, and
Maassen
,
J.
,
2018
, “
Temperature Fields Generated by a Circular Heat Source (CHS) in an Infinite Medium: Analytical Derivation and Comparison to Finite Element Modeling
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1265
1274
.10.1016/j.ijheatmasstransfer.2018.05.102
29.
Emanuel
,
M.
, and
Emanuel
,
A.
,
2019
, “
Temperature Fields Generated by a Circular Heat Source: Solution of a Composite Solid of Two Different Isotropic Semi-Infinite Media
,”
ASME J. Heat Transfer
,
141
(
12
), p. 121401.10.1115/1.4044829
30.
Jeffrey
,
A.
,
2005
,
Complex Analysis and Applications
,
CRC Press
, Boca Raton, FL.
31.
de Monte
,
F.
,
Beck
,
J. V.
, and
Amos
,
D. E.
,
2008
, “
Diffusion of Thermal Disturbances in Two-Dimensional Cartesian Transient Heat Conduction
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5931
5941
. dec10.1016/j.ijheatmasstransfer.2008.05.015
32.
Poularikas
,
A. D.
, ed.,
2000
,
The Transforms and Applications Handbook
, 2nd ed.,
CRC Press LLC
,
Boca Raton, FL
.
You do not currently have access to this content.