Abstract

Open-cell metal foams are known for their superior heat dissipation capabilities. The morphological, pressure drop, and heat transfer characteristics of stochastic metal foams manufactured through traditional “foaming” processes are well established in the literature. However, employment of stochastic metal foams in next-generation heat exchangers is challenged by the irregularity in the pore- and fiber-geometries, limited control on the pore-volume, and an inherent necessity of a bonding agent between foam and the heat source. On the other hand, additive manufacturing (AM) is capable of printing complex user-defined unit cell topologies with customized fiber shapes directly on the substrates subjected to heat load. Moreover, the user-defined regular lattices are capable of exhibiting better thermal and mechanical properties than stochastic metal foams. In this paper, we present a numerical investigation on fully periodic unit-cells of three different topologies, that is, tetrakaidecahedron (TKD), rhombic-dodecahedron (DDC), and Octet with air as the working fluid. Pressure gradient, interfacial heat transfer coefficient, friction factor, and Nusselt number are reported for each topology. Rhombic-dodecahedron yielded the highest averaged interfacial heat transfer coefficient whereas Octet incurred the highest flow losses. Pore diameter, defined as the maximum diameter of a sphere passing through the polygonal openings of the structures, when used as the characteristic length scale for the presentation of Nusselt number and Reynolds number, resulted in a single trendline for all the three topologies.

References

1.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.10.1016/j.ijheatmasstransfer.2012.03.017
2.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
3.
Dukhan
,
N.
,
Bağcı
,
Ö.
, and
Özdemir
,
M.
,
2014
, “
Metal Foam Hydrodynamics: Flow Regimes From pre-Darcy to Turbulent
,”
Int. J. Heat Mass Transfer
,
77
, pp.
114
123
.10.1016/j.ijheatmasstransfer.2014.05.017
4.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
5.
Singh
,
P.
,
Nithyanandam
,
K.
, and
Mahajan
,
R. L.
,
2020
, “
An Experimental and Numerical Investigation of Forced Convection in High Porosity Aluminum Foams Subjected to Jet Array Impingement in Channel-Flow
,”
Int. J. Heat Mass Transfer
,
149
, p.
119107
.10.1016/j.ijheatmasstransfer.2019.119107
6.
Vafai
,
K.
, and
Yang
,
K.
,
2013
, “
A Note on Local Thermal Non-Equilibrium in Porous Media and Heat Flux Bifurcation Phenomenon in Porous Media
,”
Transp. Porous Media
,
96
(
1
), pp.
169
172
.10.1007/s11242-012-0080-3
7.
Banhart
,
J.
,
2000
, “
Manufacturing Routes for Metallic Foams
,”
JOM
,
52
(
12
), pp.
22
27
.10.1007/s11837-000-0062-8
8.
Brakke
,
K. A.
,
1992
, “
The Surface Evolver
,”
Exp. Math.
,
1
(
2
), pp.
141
165
.10.1080/10586458.1992.10504253
9.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2010
, “
Microtomography-Based Simulation of Transport Through Open-Cell Metal Foams
,”
Numer. Heat Transfer, Part A: Appl.
,
58
(
7
), pp.
527
544
.10.1080/10407782.2010.511987
10.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Critical Evaluation of Additively Manufactured Metal Lattices for Viability in Advanced Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
168
, p.
120858
.10.1016/j.ijheatmasstransfer.2020.120858
11.
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Fluid Flow and Heat Transfer Characteristics of Octet Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
137
, pp.
253
261
.10.1016/j.ijthermalsci.2018.11.031
12.
Chaudhari
,
A.
,
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Experimental Investigation of Heat Transfer and Fluid Flow in Octet-Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
143
, pp.
64
75
.10.1016/j.ijthermalsci.2019.05.003
13.
Broughton
,
J.
, and
Joshi
,
Y. K.
,
2020
, “
Comparison of Single-Phase Convection in Additive Manufactured Versus Traditional Metal Foams
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
8
), p.
82201
.10.1115/1.4046972
14.
Liang
,
D.
,
Bai
,
W.
,
Chen
,
W.
, and
Chyu
,
M. K.
,
2020
, “
Investigating the Effect of Element Shape of the Face-Centered Cubic Lattice Structure on the Flow and Endwall Heat Transfer Characteristics in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
153
, p.
119579
.10.1016/j.ijheatmasstransfer.2020.119579
15.
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2019
, “
Experimental and Numerical Investigation of Forced Convection Heat Transfer in Porous Lattice Structures Produced by Selective Laser Melting
,”
Int. J. Therm. Sci.
,
137
, pp.
276
287
.10.1016/j.ijthermalsci.2018.11.022
16.
Du
,
Y.
,
Liang
,
H.
,
Xie
,
D.
,
Mao
,
N.
,
Zhao
,
J.
,
Tian
,
Z.
,
Wang
,
C.
, and
Shen
,
L.
,
2019
, “
Finite Element Analysis of Mechanical Behavior, Permeability of Irregular Porous Scaffolds and Lattice-Based Porous Scaffolds
,”
Mater. Res. Express
,
6
(
10
), p.
105407
.10.1088/2053-1591/ab3ac1
17.
Du Plessis
,
A.
,
Yadroitsava
,
I.
,
Yadroitsev
,
I.
,
Le Roux
,
S. G.
, and
Blaine
,
D. C.
,
2018
, “
Numerical Comparison of Lattice Unit Cell Designs for Medical Implants by Additive Manufacturing
,”
Virtual Phys. Prototyping
,
13
(
4
), pp.
266
281
.10.1080/17452759.2018.1491713
18.
Montazerian
,
H.
,
Zhianmanesh
,
M.
,
Davoodi
,
E.
,
Milani
,
A. S.
, and
Hoorfar
,
M.
,
2017
, “
Longitudinal and Radial Permeability Analysis of Additively Manufactured Porous Scaffolds: Effect of Pore Shape and Porosity
,”
Mater. Des.
,
122
, pp.
146
156
.10.1016/j.matdes.2017.03.006
19.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1769
.10.1016/S0022-5096(01)00010-2
20.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.10.1115/1.1429637
21.
Kim
,
D. W.
,
Bar-Cohen
,
A.
, and
Han
,
B.
,
2008
, “
Forced Convection and Flow Boiling of a Dielectric Liquid in a Foam-Filled Channel
,”
IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 28–31, pp.
86
94
.10.1109/IT HERM.2008.4544258
22.
Abadi
,
G. B.
,
Moon
,
C.
, and
Kim
,
K. C.
,
2016
, “
Experimental Study on Single-Phase Heat Transfer and Pressure Drop of Refrigerants in a Plate Heat Exchanger With Metal-Foam-Filled Channels
,”
Appl. Therm. Eng.
,
102
, pp.
423
431
.10.1016/j.applthermaleng.2016.03.099
23.
Kuruneru
,
S. T. W.
,
Vafai
,
K.
,
Sauret
,
E.
, and
Gu
,
Y.
,
2020
, “
Application of Porous Metal Foam Heat Exchangers and the Implications of Particulate Fouling for Energy-Intensive Industries
,”
Chem. Eng. Sci.
,
228
, p.
115968
.10.1016/j.ces.2020.115968
24.
Wang
,
T.
,
Luan
,
W.
,
Liu
,
T.
,
Tu
,
S. T.
, and
Yan
,
J.
,
2016
, “
Performance Enhancement of Thermoelectric Waste Heat Recovery System by Using Metal Foam Inserts
,”
Energy Convers. Manage.
,
124
, pp.
13
19
.10.1016/j.enconman.2016.07.006
25.
Alhusseny
,
A.
,
Al-Aabidy
,
Q.
,
Al-Zurfi
,
N.
,
Nasser
,
A.
, and
Aljanabi
,
M.
,
2021
, “
Cooling of High-Performance Electronic Equipment Using Graphite Foam Heat Sinks
,”
Appl. Therm. Eng.
,
191
, p.
116844
.10.1016/j.applthermaleng.2021.116844
26.
Sun
,
W.
,
Ji
,
J.
, and
He
,
W.
,
2010
, “
Influence of Channel Depth on the Performance of Solar Air Heaters
,”
Energy
,
35
(
10
), pp.
4201
4207
.10.1016/j.energy.2010.07.006
27.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Numerical Investigation on Conjugate Heat Transfer in Octet-Shape-Based Single Unit Cell Thick Metal Foam
,”
Int. Commun. Heat Mass Transfer
,
121
, p.
105090
.10.1016/j.icheatmasstransfer.2020.105090
28.
Qu
,
Z. G.
,
Wang
,
T. S.
,
Tao
,
W. Q.
, and
Lu
,
T. J.
,
2012
, “
A Theoretical Octet-Truss Lattice Unit Cell Model for Effective Thermal Conductivity of Consolidated Porous Materials Saturated With Fluid
,”
Heat Mass Transfer
,
48
(
8
), pp.
1385
1395
.10.1007/s00231-012-0985-y
29.
Kaur
,
I.
, and
Singh
,
P.
,
2020
, “
Flow and Thermal Transport Through Unit Cell Topologies of Cubic and Octahedron Families
,”
Int. J. Heat Mass Transfer
,
158
, p.
119784
.10.1016/j.ijheatmasstransfer.2020.119784
30.
Ali
,
D.
,
Ozalp
,
M.
,
Blanquer
,
S. B.
, and
Onel
,
S.
,
2020
, “
Permeability and Fluid Flow-Induced Wall Shear Stress in Bone Scaffolds With TPMS and Lattice Architectures: A CFD Analysis
,”
Eur. J. Mech.-B/Fluids
,
79
, pp.
376
385
.10.1016/j.euromechflu.2019.09.015
31.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Bianco
,
N.
,
Chiu
,
W. K.
, and
Naso
,
V.
,
2014
, “
Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models
,”
ASME J Heat Transfer-Trans. ASME
,
136
(
11
), p.
112601
.10.1115/1.4028113
32.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J Heat Transfer-Trans. ASME
,
128
(
8
), pp.
793
799
.10.1115/1.2227038
33.
Murthy
,
J. Y.
, and
Mathur
,
S.
,
1997
, “
Periodic Flow and Heat Transfer Using Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
,
25
(
6
), pp.
659
677
.10.1002/(SICI)1097-0363(19970930)25:6<659::AID-FLD580>3.0.CO;2-Y
34.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
2
), pp.
180
186
.10.1115/1.3450666
35.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Flow and Thermal Transport Characteristics of Triply-Periodic Minimal Surface (TPMS)-Based Gyroid and Schwarz-P Cellular Materials
,”
Numer. Heat Transfer, Part A: Appl.
,
79
(
8
), pp.
553
569
.10.1080/10407782.2021.1872260
36.
Ambrosio
,
G.
,
Bianco
,
N.
,
Chiu
,
W. K.
,
Iasiello
,
M.
,
Naso
,
V.
, and
Oliviero
,
M.
,
2016
, “
The Effect of Open-Cell Metal Foams Strut Shape on Convection Heat Transfer and Pressure Drop
,”
Appl. Therm. Eng.
,
103
, pp.
333
343
.10.1016/j.applthermaleng.2016.04.085
37.
Dukhan
,
N.
,
2006
, “
Correlations for the Pressure Drop for Flow Through Metal Foam
,”
Exp. Fluids
,
41
(
4
), pp.
665
672
.10.1007/s00348-006-0194-x
38.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.10.1023/A:1006643815323
39.
Leong
,
K. C.
, and
Jin
,
L. W.
,
2006
, “
Effect of Oscillatory Frequency on Heat Transfer in Metal Foam Heat Sinks of Various Pore Densities
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
671
681
.10.1016/j.ijheatmasstransfer.2005.08.015
40.
Vafai
,
K.
, and
Tien
,
C. L.
,
1982
, “
Boundary and Inertia Effects on Convective Mass Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
25
(
8
), pp.
1183
1190
.10.1016/0017-9310(82)90212-5
41.
Beavers
,
G. S.
, and
Sparrow
,
E. M.
,
1969
, “
Non-Darcy Flow Through Fibrous Porous Media
,”
ASME J. Appl. Mech.
,
36
(
4
), pp.
711
714
.10.1115/1.3564760
42.
Cunsolo
,
S.
,
Iasiello
,
M.
,
Oliviero
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K.
, and
Naso
,
V.
,
2016
, “
Lord Kelvin and Weaire–Phelan Foam Models: Heat Transfer and Pressure Drop
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
2
), p.
22601
.10.1115/1.4031700
43.
Zafari
,
M.
,
Panjepour
,
M.
,
Emami
,
M. D.
, and
Meratian
,
M.
,
2015
, “
Microtomography-Based Numerical Simulation of Fluid Flow and Heat Transfer in Open Cell Metal Foams
,”
Appl. Therm. Eng.
,
80
, pp.
347
354
.10.1016/j.applthermaleng.2015.01.045
You do not currently have access to this content.