Abstract

The performance and life cycle of Li-ion batteries are governed by the maximum temperature and uniformity of temperature distribution in the battery pack, and an efficient thermal management system is highly desired to keep the operating temperature of the battery pack within safe operating limits. Air cooling has received extensive attention in the area of battery thermal management. However, performance intensification of air-cooling modules is essential while keeping the simplicity of design to satisfy the weight and space constraints of electric vehicle (EV) applications. In the current work, efforts have been made to design a simple and generalized air-cooling module for efficient thermal management of Li-ion batteries. The current work explored the effect of two common air flow configurations: side inlet and side outlet (SS) and side inlet and front outlet (SF), with different number of inlet/outlet ports (single inlet and single outlet, single inlet and two outlets, two inlets and single outlet, and two inlets and two outlets) on the thermal and hydraulic performance of Li-ion battery pack. Subsequently, a new design of battery module with an open outlet port is proposed. It is observed that the way fluid leaves the cooling module significantly influences the flow and temperature distribution uniformity of the battery pack. Significant improvement in the fluid flow distribution and lower temperature fluctuation are maintained by the SF designs as compared to the SS designs. Among all SS designs, only SS-Ib at Vin ≥ 5.6 m/s and SS-IV at Vin ≥ 4.8 m/s are found suitable for the thermal management of Li-ion battery pack, whereas all SF designs maintained desired Tmax and ΔTmax conditions at Vin ≥ 4.8 m/s. Furthermore, the new design (SF-V) with an open outlet results in the reduction of Tmax by 7 °C and ΔTmax by 64.5% as compared to base design (SS-Ia) at the same pressure drop penalty.

References

1.
United Nations Climate Change,
2015, “The Paris Agreement,” United Nations Climate Change, Paris, France, accessed Feb. 4, 2022, https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
2.
Lin
,
B.
, and
Xu
,
B.
,
2018
, “
How to Promote the Growth of New Energy Industry at Different Stages?
,”
Energy Policy
,
118
, pp.
390
403
.10.1016/j.enpol.2018.04.003
3.
Yu
,
H.
,
Fan
,
J. L.
,
Wang
,
Y.
, and
Wang
,
J.
,
2018
, “
Research on the New-Generation Urban Energy System in China
,”
Energy Procedia
,
152
, pp.
698
780
.10.1016/j.egypro.2018.09.233
4.
Yang
,
D.-X.
,
Qiu
,
L.-S.
,
Yan
,
J.-J.
,
Chen
,
Z.-Y.
, and
Jiang
,
M.
,
2019
, “
The Government Regulation and Market Behavior of the New Energy Automotive Industry
,”
J. Cleaner Prod.
,
210
, pp.
1281
1288
.10.1016/j.jclepro.2018.11.124
5.
Thakur
,
A. K.
,
Prabakaran
,
R.
,
Elkadeem
,
M. R.
,
Sharshir
,
S. W.
,
Arıcı
,
M.
,
Wang
,
C.
,
Zhao
,
W.
,
Hwang
,
J. Y.
, and
Saidur
,
R.
,
2020
, “
A State of Art Review and Future Viewpoint on Advance Cooling Techniques for Lithium–Ion Battery System of Electric Vehicles
,”
J. Energy Storage
,
32
, p.
101771
.10.1016/j.est.2020.101771
6.
Lu
,
M.
,
Zhang
,
X.
,
Ji
,
J.
,
Xu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Research Progress on Power Battery Cooling Technology for Electric Vehicles
,”
J. Energy Storage
,
27
, p.
101155
.10.1016/j.est.2019.101155
7.
Zichen
,
W.
, and
Changqing
,
D.
,
2021
, “
A Comprehensive Review on Thermal Management Systems for Power Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
139
, p.
110685
.10.1016/j.rser.2020.110685
8.
Wang
,
X.
,
Li
,
B.
,
Gerada
,
D.
,
Huang
,
K.
,
Stone
,
I.
,
Worrall
,
S.
, and
Yan
,
Y.
,
2022
, “
A Critical Review on Thermal Management Technologies for Motors in Electric Cars
,”
Appl. Therm. Eng.
,
201
, p.
117758
.10.1016/j.applthermaleng.2021.117758
9.
IEA,
2022
, “Global EV Outlook 2022
,”
IEA
, Paris, France, accessed Sept. 1, 2022, https://www.iea.org/reports/global-ev-outlook-2022
10.
Fan
,
Y.
,
Bao
,
Y.
,
Ling
,
C.
,
Chu
,
Y.
,
Tan
,
X.
, and
Yang
,
S.
,
2019
, “
Experimental Study on the Thermal Management Performance of Air Cooling for High Energy Density Cylindrical Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
155
, pp.
96
109
.10.1016/j.applthermaleng.2019.03.157
11.
Karimi
,
G.
, and
Dehghan
,
A.
,
2014
, “
Thermal Analysis of High‐Power Lithium‐Ion Battery Packs Using Flow Network Approach
,”
Int. J. Energy Res.
,
38
(
14
), pp.
1793
1811
.10.1002/er.3173
12.
Beheshti
,
A.
,
Shanbedi
,
M.
, and
Heris
,
S. Z.
,
2014
, “
Heat Transfer and Rheological Properties of Transformer Oil-Oxidized MWCNT Nanofluid
,”
J. Therm. Anal. Calorim.
,
118
(
3
), pp.
1451
1460
.10.1007/s10973-014-4048-0
13.
Huo
,
Y.
, and
Rao
,
Z.
,
2015
, “
The Numerical Investigation of Nanofluid Based Cylinder Battery Thermal Management Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
91
, pp.
374
384
.10.1016/j.ijheatmasstransfer.2015.07.128
14.
Selvam
,
C.
,
Lal
,
D. M.
, and
Harish
,
S.
,
2016
, “
Thermal Conductivity Enhancement of Ethylene Glycol and Water With Graphene Nanoplatelets
,”
Thermochim. Acta
,
642
, pp.
32
38
.10.1016/j.tca.2016.09.002
15.
Sidney
,
S.
,
Dhasan
,
M. L.
,
Selvam
,
C.
, and
Harish
,
S.
,
2019
, “
Experimental Investigation of Freezing and Melting Characteristics of Graphene-Based Phase Change Nanocomposite for Cold Thermal Energy Storage Applications
,”
Appl. Sci.
,
9
(
6
), p.
1099
.10.3390/app9061099
16.
Jilte
,
R.
,
Kumar
,
R.
, and
Ahmadi
,
M. H.
,
2019
, “
Cooling Performance of Nanofluid Submerged Versus Nanofluid Circulated Battery Thermal Management Systems
,”
J. Cleaner Prod.
,
240
, p.
118131
.10.1016/j.jclepro.2019.118131
17.
Wang
,
S.
,
Lin
,
Z.
,
Zhang
,
W.
, and
Chen
,
J.
,
2009
, “
Experimental Study on Pulsating Heat Pipe With Functional Thermal Fluids
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5276
5279
.10.1016/j.ijheatmasstransfer.2009.04.033
18.
Burban
,
G.
,
Ayel
,
V.
,
Alexandre
,
A.
,
Lagonotte
,
P.
,
Bertin
,
Y.
, and
Romestant
,
C.
,
2013
, “
Experimental Investigation of a Pulsating Heat Pipe for Hybrid Vehicle Applications
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
94
103
.10.1016/j.applthermaleng.2012.05.037
19.
Rao
,
Z.
,
Huo
,
Y.
, and
Liu
,
X.
,
2014
, “
Experimental Study of an OHP-Cooled Thermal Management System for Electric Vehicle Power Battery
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
20
26
.10.1016/j.expthermflusci.2014.03.017
20.
Ye
,
Y.
,
Saw
,
L. H.
,
Shi
,
Y.
, and
Tay
,
A. A.
,
2015
, “
Numerical Analyses on Optimizing a Heat Pipe Thermal Management System for Lithium-Ion Batteries During Fast Charging
,”
Appl. Therm. Eng.
,
86
, pp.
281
291
.10.1016/j.applthermaleng.2015.04.066
21.
Rao
,
Z.
,
Huo
,
Y.
,
Liu
,
X.
, and
Zhang
,
G.
,
2015
, “
Experimental Investigation of Battery Thermal Management System for Electric Vehicle Based on Paraffin/Copper Foam
,”
J. Energy Inst.
,
88
(
3
), pp.
241
246
.10.1016/j.joei.2014.09.006
22.
Wang
,
Z.
,
Zhang
,
Z.
,
Jia
,
L.
, and
Yang
,
L.
,
2015
, “
Paraffin and Paraffin/Aluminum Foam Composite Phase Change Material Heat Storage Experimental Study Based on Thermal Management of Li-Ion Battery
,”
Appl. Therm. Eng.
,
78
, pp.
428
436
.10.1016/j.applthermaleng.2015.01.009
23.
Jiang
,
G.
,
Huang
,
J.
,
Fu
,
Y.
,
Cao
,
M.
, and
Liu
,
M.
,
2016
, “
Thermal Optimization of Composite Phase Change Material/Expanded Graphite for Li-Ion Battery Thermal Management
,”
Appl. Therm. Eng.
,
108
, pp.
1119
1125
.10.1016/j.applthermaleng.2016.07.197
24.
Ping
,
P.
,
Peng
,
R.
,
Kong
,
D.
,
Chen
,
G.
, and
Wen
,
J.
,
2018
, “
Investigation on Thermal Management Performance of PCM-Fin Structure for Li-Ion Battery Module in High-Temperature Environment
,”
Energy Convers. Manage.
,
176
, pp.
131
146
.10.1016/j.enconman.2018.09.025
25.
Zhang
,
J.
,
Shao
,
D.
,
Jiang
,
L.
,
Zhang
,
G.
,
Wu
,
H.
,
Day
,
R.
, and
Jiang
,
W.
,
2022
, “
Advanced Thermal Management System Driven by Phase Change Materials for Power Lithium-Ion Batteries: A Review
,”
Renewable Sustainable Energy Rev.
,
159
, p.
112207
.10.1016/j.rser.2022.112207
26.
Qin
,
P.
,
Liao
,
M.
,
Zhang
,
D.
,
Liu
,
Y.
,
Sun
,
J.
, and
Wang
,
Q.
,
2019
, “
Experimental and Numerical Study on a Novel Hybrid Battery Thermal Management System Integrated Forced-Air Convection and Phase Change Material
,”
Energy Convers. Manage.
,
195
, pp.
1371
1381
.10.1016/j.enconman.2019.05.084
27.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.10.1016/j.jpowsour.2011.02.076
28.
Na
,
X.
,
Kang
,
H.
,
Wang
,
T.
, and
Wang
,
Y.
,
2018
, “
Reverse Layered Air Flow for Li-Ion Battery Thermal Management
,”
Appl. Therm. Eng.
,
143
, pp.
257
262
.10.1016/j.applthermaleng.2018.07.080
29.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2018
, “
Development and Analysis of a Technique to Improve Air-Cooling and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
351
363
.10.1016/j.tsep.2018.01.003
30.
Jiaqiang
,
E.
,
Yue
,
M.
,
Chen
,
J.
,
Zhu
,
H.
,
Deng
,
Y.
,
Zhu
,
Y.
,
Zhang
,
F.
,
Wen
,
M.
,
Zhang
,
B.
, and
Kang
,
S.
,
2018
, “
Effects of the Different Air Cooling Strategies on Cooling Performance of a Lithium-Ion Battery Module With Baffle
,”
Appl. Therm. Eng.
,
144
, pp.
231
241
.10.1016/j.applthermaleng.2018.08.064
31.
Wang
,
Y. W.
,
Jiang
,
J. M.
,
Chung
,
Y. H.
,
Chen
,
W. C.
, and
Shu
,
C. M.
,
2019
, “
Forced-Air Cooling System for Large-Scale Lithium-Ion Battery Modules During Charge and Discharge Processes
,”
J. Therm. Anal. Calorim.
,
135
(
5
), pp.
2891
2901
.10.1007/s10973-018-7646-4
32.
Fan
,
L.
,
Khodadadi
,
J. M.
, and
Pesaran
,
A. A.
,
2013
, “
A Parametric Study on Thermal Management of an Air-Cooled Lithium-Ion Battery Module for Plug-In Hybrid Electric Vehicles
,”
J. Power Sources
,
238
, pp.
301
312
.10.1016/j.jpowsour.2013.03.050
33.
Xie
,
J.
,
Ge
,
Z.
,
Zang
,
M.
, and
Wang
,
S.
,
2017
, “
Structural Optimization of Lithium-Ion Battery Pack With Forced Air Cooling System
,”
Appl. Therm. Eng.
,
126
, pp.
583
593
.10.1016/j.applthermaleng.2017.07.143
34.
Hong
,
S.
,
Zhang
,
X.
,
Chen
,
K.
, and
Wang
,
S.
,
2018
, “
Design of Flow Configuration for Parallel Air-Cooled Battery Thermal Management System With Secondary Vent
,”
Int. J. Heat Mass Transfer
,
116
, pp.
1204
1212
.10.1016/j.ijheatmasstransfer.2017.09.092
35.
Chen
,
K.
,
Wang
,
S.
,
Song
,
M.
, and
Chen
,
L.
,
2017
, “
Structure Optimization of Parallel Air-Cooled Battery Thermal Management System
,”
Int. J. Heat Mass Transfer
,
111
, pp.
943
952
.10.1016/j.ijheatmasstransfer.2017.04.026
36.
Liu
,
Z.
,
Wang
,
Y.
,
Zhang
,
J.
, and
Liu
,
Z.
,
2014
, “
Shortcut Computation for the Thermal Management of a Large Air-Cooled Battery Pack
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
445
452
.10.1016/j.applthermaleng.2014.02.040
37.
Chen
,
K.
,
Song
,
M.
,
Wei
,
W.
, and
Wang
,
S.
,
2019
, “
Design of the Structure of Battery Pack in Parallel Air-Cooled Battery Thermal Management System for Cooling Efficiency Improvement
,”
Int. J. Heat Mass Transfer
,
132
, pp.
309
321
.10.1016/j.ijheatmasstransfer.2018.12.024
38.
Li
,
X.
,
He
,
F.
,
Zhang
,
G.
,
Huang
,
Q.
, and
Zhou
,
D.
,
2019
, “
Experiment and Simulation for Pouch Battery With Silica Cooling Plates and Copper Mesh Based Air Cooling Thermal Management System
,”
Appl. Therm. Eng.
,
146
, pp.
866
880
.10.1016/j.applthermaleng.2018.10.061
39.
Wang
,
S.
,
Li
,
K.
,
Tian
,
Y.
,
Wang
,
J.
,
Wu
,
Y.
, and
Ji
,
S.
,
2019
, “
Improved Thermal Performance of a Large Laminated Lithium-Ion Power Battery by Reciprocating Air Flow
,”
Appl. Therm. Eng.
,
152
, pp.
445
454
.10.1016/j.applthermaleng.2019.02.061
40.
Liu
,
Y.
, and
Zhang
,
J.
,
2019
, “
Design a J-Type Air-Based Battery Thermal Management System Through Surrogate-Based Optimization
,”
Appl. Energy
,
252
, p.
113426
.10.1016/j.apenergy.2019.113426
41.
Kang
,
D.
,
Lee
,
P.-Y.
,
Yoo
,
K.
, and
Kim
,
J.
,
2020
, “
Internal Thermal Network Model-Based Inner Temperature Distribution of High-Power Lithium-Ion Battery Packs With Different Shapes for Thermal Management
,”
J. Energy Storage
,
27
, p.
101017
.10.1016/j.est.2019.101017
42.
Zhang
,
F.
,
Lin
,
A.
,
Wang
,
P.
, and
Liu
,
P.
,
2021
, “
Optimization Design of a Parallel Air-Cooled Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
182
, p.
116062
.10.1016/j.applthermaleng.2020.116062
43.
Ma
,
R.
,
Ren
,
Y.
,
Wu
,
Z.
,
Xie
,
S.
,
Chen
,
K.
, and
Wu
,
W.
,
2022
, “
Optimization of an Air Cooled Battery Module With Novel Cooling Channels Based on Silica Cooling Plates
,”
Appl. Therm. Eng.
,
213
, p.
118650
.10.1016/j.applthermaleng.2022.118650
44.
Nacke
,
R.
,
Northcutt
,
B.
, and
Mudawar
,
I.
,
2011
, “
Theory and Experimental Validation of Cross-Flow Micro-Channel Heat Exchanger Module With Reference to High Mach Aircraft Gas Turbine Engines
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1224
1235
.10.1016/j.ijheatmasstransfer.2010.10.028
45.
Kumar
,
R.
,
Singh
,
G.
, and
Mikielewicz
,
D.
,
2018
, “
A New Approach for the Mitigating of Flow Maldistribution in Parallel Microchannel Heat Sink
,”
ASME J. Heat Transfer
,
140
(
7
), p.
072401
.10.1115/1.4038830
46.
Kumar
,
R.
,
Singh
,
G.
, and
Mikielewicz
,
D.
,
2019
, “
Numerical Study on Mitigation of Flow Maldistribution in Parallel Microchannel Heat Sink: Channels Variable Width Versus Variable Height Approach
,”
ASME J. Electron. Packag.
,
141
(
2
), p.
021009
.10.1115/1.4043158
You do not currently have access to this content.