Abstract

Film cooling is one of the most efficient and widely used cooling methods for high-temperature components. The interaction between the film cooling jet and main flow creates the counter-rotating vortex pair (CRVP), which enhances the mixing between coolant and hot stream and lifts the coolant film off the protected surface. The desire to overcome the unfavorable effects of CRVP and thus efficiently improve cooling effectiveness promotes various new combined-hole designs for film cooling. In this review paper, a summary of previous progress on film cooling and a special focus on recent literature related to the combined-hole film cooling designs with less difficulty in machining are provided. The underlying mechanisms of the enhancement in cooling effectiveness and film coverage due to antikidney vortex structure by combined holes are analyzed. Some perspectives on future prospects are finally addressed.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
2.
Liu
,
X.
,
Zhang
,
G.
,
Sunden
,
B.
, and
Xie
,
G.
,
2018
, “
Numerical Predictions of Flow and Heat Transfer of Film Cooling With an Internal Channel Roughened by Crescent Ribs
,”
Numer. Heat Transfer Part A: Appl.
,
74
(
9
), pp.
1539
1564
.10.1080/10407782.2018.1538291
3.
Chen
,
Z.
,
Zhang
,
Z.
,
Li
,
Y.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Vortex Dynamics Based Analysis of Internal Crossflow Effect on Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
145
, p.
118757
.10.1016/j.ijheatmasstransfer.2019.118757
4.
Jiang
,
Y.
,
Yue
,
G.
,
Dong
,
P.
,
Gao
,
J.
, and
Zheng
,
Q.
,
2017
, “
Investigation on Film Cooling With Swirling Coolant Flow by Optimizing the Inflow Chamber
,”
Int. Commun. Heat Mass Transfer
,
88
, pp.
99
107
.10.1016/j.icheatmasstransfer.2017.08.008
5.
Liu
,
C.
,
Ye
,
L.
,
Zhu
,
H.
, and
Luo
,
J.
,
2017
, “
Investigation on the Effects of Rib Orientation Angle on the Film Cooling With Ribbed Cross-Flow Coolant Channel
,”
Int. J. Heat Mass Transfer
,
115
, pp.
379
394
.10.1016/j.ijheatmasstransfer.2017.08.063
6.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine
,”
ASME J. Turbomach.
,
131
(
2
), pp.
285
295
.10.1115/1.2950051
7.
Giller
,
L.
, and
Schiffer
,
H. P.
,
2012
, “
Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine
,”
ASME
Paper No. GT2012-69157.10.1115/GT2012-69157
8.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
9.
Oliver
,
T. A.
,
Bogard
,
D. G.
, and
Moser
,
R. D.
,
2019
, “
Large Eddy Simulation of Compressible, Shaped-Hole Film Cooling
,”
Int. J. Heat Mass Transfer
,
140
, pp.
498
517
.10.1016/j.ijheatmasstransfer.2019.04.119
10.
Dai
,
P.
, and
Lin
,
F.
,
2011
, “
Numerical Study on Film Cooling Effectiveness From Shaped and Crescent Holes
,”
Heat Mass Transfer
,
47
(
2
), pp.
147
154
.10.1007/s00231-010-0692-5
11.
Yao
,
Y.
,
Zhang
,
J.
, and
Wang
,
L.
,
2013
, “
Film Cooling on a Gas Turbine Blade Suction Side With Converging Slot-Hole
,”
Int. J. Therm. Sci.
,
65
, pp.
267
279
.10.1016/j.ijthermalsci.2012.10.004
12.
Fu
,
Z.
,
Zhu
,
H.
,
Liu
,
C.
,
Wei
,
J.
, and
Zhang
,
B.
,
2018
, “
Investigation of the Influence of Inclination Angle and Diffusion Angle on the Film Cooling Performance of Chevron Shaped Hole
,”
J. Therm. Sci.
,
27
(
6
), pp.
580
591
.10.1007/s11630-018-1070-8
13.
Davidson
,
F. T.
,
KistenMacher
,
D. A.
, and
Bogard
,
D. G.
,
2014
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches
,”
ASME J. Turbomach.
,
136
(
4
), p.
041007
.10.1115/1.4024883
14.
Abdala
,
A. M. M.
,
Elwekeel
,
F. N. M.
, and
Huang
,
D.
,
2016
, “
Film Cooling Effectiveness and Flow Structures for Novel Upstream Steps
,”
Appl. Therm. Eng.
,
105
, pp.
397
410
.10.1016/j.applthermaleng.2015.05.074
15.
Na
,
S.
, and
Shih
,
T.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
464
471
.10.1115/1.2709965
16.
Hou
,
R.
,
Wen
,
F.
,
Wang
,
S.
,
Luo
,
Y.
, and
Tang
,
X.
,
2019
, “
Large Eddy Simulation of the Trenched Film Cooling Hole With Different Compound Angles and Coolant Inflow Orientation Effects
,”
Appl. Therm. Eng.
,
163
, p.
114397
.10.1016/j.applthermaleng.2019.114397
17.
Du
,
K.
,
Li
,
Z.
, and
Li
,
J.
,
2019
, “
Effects of Trenched Film Hole Configurations on the Endwall Film Cooling and Suction Side Phantom Cooling
,”
J. Therm. Sci.
,
28
(
5
), pp.
905
914
.10.1007/s11630-019-1195-4
18.
Hou
,
R.
,
Wen
,
F.
,
Cui
,
T.
,
Tang
,
X.
, and
Wang
,
S.
,
2019
, “
Effect of Different Trench Lips on Downstream Film Cooling Effectiveness and Flow Fields
,”
J. Therm. Sci.
,
28
(
2
), pp.
340
353
.10.1007/s11630-018-1061-9
19.
Li
,
Y.
,
Wu
,
H.
,
Zhou
,
F.
, and
Rong
,
C.
,
2016
, “
Research on Cooling Effectiveness in Stepped Slot Film Cooling Vane
,”
J. Therm. Sci.
,
25
(
3
), pp.
273
279
.10.1007/s11630-016-0860-0
20.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
21.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME
Paper No. 97-GT-045.10.1115/97-GT-045 24
22.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.10.1017/S0022112096001255
23.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.10.1017/S0022112097007271
24.
Javadi
,
K.
,
Taeibi-Rahni
,
M.
, and
Darbandi
,
M.
,
2005
, “
Jet Into Cross Flow Boundary Layer Control - An Innovation in Gas Turbine Blade Cooling
,”
AIAA
Paper No. 2005-5272.10.2514/6.2005-5272
25.
Javadi
,
K.
,
2018
, “
Introducing Film Cooling Uniformity Coefficient
,”
Heat Transfer Eng.
,
39
(
2
), pp.
180
193
.10.1080/01457632.2017.1288056
26.
Taeibi-Rahni
,
M.
,
Javadi
,
A.
,
Javadi
,
K.
, and
Darbandi
,
M.
,
2003
, “
A New Approach to Improve Film Cooling Effectiveness, Using Combined Jets
,” The International Gas Turbine Congress, Tokyo, Japan, Report No.
TS-071
.https://www.researchgate.net/publication/310674502_A_New_Approach_to_Improve_Film_Cooling_Effectiveness_Using_Combined_Jets
27.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Study on Improving Large Angle Film Cooling Performance Through the Use of Sister Holes
,”
Numer. Heat Transfer, Part A: Appl.
,
55
(
7
), pp.
634
653
.10.1080/10407780902821532
28.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Evaluation on the Effect of Sister Holes on Film Cooling Effectiveness and the Surrounding Flow Field
,”
Heat Mass Transfer
,
45
(
11
), pp.
1435
1446
.10.1007/s00231-009-0523-8
29.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2010
, “
A Parametric Study on the Effect of Sister Hole Location on Active Film Cooling Flow Control
,”
ASME
Paper No. GT2010-22060.10.1115/GT2010-22060
30.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2012
, “
Film Cooling From Short Holes With Sister Hole Influence
,”
ASME
Paper No. GT2012-68601.10.1115/GT2012-68601
31.
Dai
,
S.
,
Xiao
,
Y.
,
He
,
L.
,
Jin
,
T.
, and
Zhao
,
Z.
,
2016
, “
Film Cooling From a Cylindrical Hole With Parallel Auxiliary Holes Influences
,”
Numer. Heat Transfer Part A: Appl.
,
69
(
5
), pp.
497
511
.10.1080/10407782.2015.1081023
32.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2016
, “
A Numerical Investigation of Film Cooling Performance Through Variations in the Location of Discrete Sister Holes
,”
Appl. Therm. Eng.
,
107
, pp.
345
364
.10.1016/j.applthermaleng.2016.06.135
33.
Zhu
,
R.
,
Simon
,
T. W.
, and
Xie
,
G.
,
2018
, “
Influence of Secondary Hole Injection Angle on Enhancement of Film Cooling Effectiveness With Horn-Shaped or Cylindrical Primary Holes
,”
Numer. Heat Transfer, Part A: Appl.
,
74
(
5
), pp.
1207
1227
.10.1080/10407782.2018.1490088
34.
Zhou
,
J.
,
Wang
,
X.
,
Li
,
J.
, and
Lu
,
H.
,
2020
, “
Effects of Diameter Ratio and Inclination Angle on Flow and Heat Transfer Characteristics of Sister Holes Film Cooling
,”
Int. Commun. Heat Mass Transfer
,
110
, p.
104426
.10.1016/j.icheatmasstransfer.2019.104426
35.
Wu
,
H.
,
Cheng
,
H.
,
Li
,
Y.
,
Rong
,
C.
, and
Ding
,
S.
,
2016
, “
Effects of Side Hole Position and Blowing Ratio on Sister Hole Film Cooling Performance in a Flat Plate
,”
Appl. Therm. Eng.
,
93
, pp.
718
730
.10.1016/j.applthermaleng.2015.09.118
36.
Cheng
,
H.
,
Wu
,
H.
,
Li
,
Y.
, and
Ding
,
S.
,
2017
, “
Effect of Rotation on a Downstream Sister Holes Film Cooling Performance in a Flat Plate Model
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
154
166
.10.1016/j.expthermflusci.2017.03.001
37.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2007
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME
Paper No. GT2007-27528.10.1115/GT2007-27528
38.
Dhungel
,
A.
,
Lu
,
Y.
,
Phillips
,
W.
,
Ekkad
,
S. V.
, and
Heidmann
,
J.
,
2009
, “
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021007
.10.1115/1.2950059
39.
LeBlanc
,
C. N.
,
Ramesh
,
S.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2013
, “
Effect of Hole Exit Shaping on Film Cooling Performance for Tripod Hole Injection Over a Flat Surface
,”
ASME
Paper No. GT2013-94456.10.1115/GT2013-94456
40.
Ramesh
,
S.
,
Ramirez
,
D. G.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2016
, “
Analysis of Film Cooling Performance of Advanced Tripod Hole Geometries With and Without Manufacturing Features
,”
Int. J. Heat Mass Transfer
,
94
, pp.
9
19
.10.1016/j.ijheatmasstransfer.2015.11.033
41.
LeBlanc
,
C.
,
Narzary
,
D. P.
, and
Ekkad
,
S.
,
2013
, “
Film-Cooling Performance of Antivortex Hole on a Flat Plate
,”
ASME J. Turbomach.
,
135
(
6
), p.
061009
.10.1115/1.4023436
42.
Hayes
,
S. A.
,
Nix
,
A. C.
,
Nestor
,
C. M.
,
Billups
,
D. T.
, and
Haught
,
S. M.
,
2017
, “
Experimental Investigation of the Influence of Freestream Turbulence on an Anti-Vortex Film Cooling Hole
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
314
326
.10.1016/j.expthermflusci.2016.10.025
43.
Park
,
S. S.
,
Kim
,
Y. J.
, and
Kwak
,
J. S.
,
2017
, “
Film-Cooling Effectiveness of Antivortex Holes at Three Different Mainstream Turbulence Levels
,”
AIAA J. Propul. Power
,
33
(
6
), pp.
1561
1569
.10.2514/1.B36212
44.
Repko
,
T. W.
,
Nix
,
A. C.
,
Uysal
,
S. C.
, and
Sisler
,
A. T.
,
2016
, “
Flow Visualization of Multi-Hole Film-Cooling Flow Under Varying Freestream Turbulence Levels
,”
J. Flow Control, Meas. Visualization
,
04
(
01
), pp.
13
29
.10.4236/jfcmv.2016.41002
45.
Ramesh
,
S.
,
LeBlanc
,
C.
,
Narzary
,
D.
,
Ekkad
,
S.
, and
Anne Alvin
,
M.
,
2017
, “
Film Cooling Performance of Tripod Antivortex Injection Holes Over the Pressure and Suction Surfaces of a Nozzle Guide Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021006
.10.1115/1.4035290
46.
Al-Zurfi
,
N.
,
Turan
,
A.
,
Nasser
,
A.
, and
Alhusseny
,
A.
,
2019
, “
A Numerical Study of Anti-Vortex Film-Cooling Holes Designs in a 1-1/2 Turbine Stage Using LES
,”
Propul. Power Res.
,
8
(
4
), pp.
275
299
.10.1016/j.jppr.2019.10.001
47.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.10.1115/1.2720508
48.
Kusterer
,
K.
,
Elyas
,
A.
, and
Bohn
,
D.
,
2010
, “
Film Cooling Effectiveness Comparison Between Shaped and Double Jet Film Cooling Holes
,”
ASME
Paper No. GT2010-22604.10.1115/GT2010-22604
49.
Choi
,
D.-W.
,
Lee
,
K.-D.
, and
Kim
,
K.-Y.
,
2013
, “
Analysis and Optimization of Double-Jet Film-Cooling Holes
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
246
254
.10.2514/1.T4060
50.
Lee
,
K.-D.
,
Choi
,
D.-W.
, and
Kim
,
K.-Y.
,
2013
, “
Optimization of Ejection Angles of Double-Jet Film-Cooling Holes Using RBNN Model
,”
Int. J. Therm. Sci.
,
73
, pp.
69
78
.10.1016/j.ijthermalsci.2013.05.015
51.
Han
,
C.
,
Ren
,
J.
, and
Jiang
,
H.-D.
,
2012
, “
Multi-Parameter Influence on Combined-Hole Film Cooling System
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4232
4240
.10.1016/j.ijheatmasstransfer.2012.03.064
52.
Gräf
,
L.
, and
Kleiser
,
L.
,
2014
, “
Film Cooling Using Antikidney Vortex Pairs: Effect of Blowing Conditions and Yaw Angle on Cooling and Losses
,”
ASME J. Turbomach.
,
136
(
1
), p.
011018
.10.1115/1.4024648
53.
Khalatov
,
A. A.
,
Borisov
,
I. I.
,
Dashevsky
,
Y. J.
,
Panchenko
,
N. A.
, and
Kovalenko
,
A. S.
,
2014
, “
Flat-Plate Film Cooling From a Double Jet Holes: Influence of Free-Stream Turbulence and Flow Acceleration
,”
Thermophys. Aeromech.
,
21
(
5
), pp.
545
552
.10.1134/S0869864314050023
54.
Hariram
,
V.
,
Micha Premkumar
,
T.
,
Roychowdhury
,
D. G.
,
Sivamani
,
S.
, and
Kannan
,
E.
,
2019
, “
Improvement in Film Cooling Effectiveness Using Single and Double Rows of Holes With Adverse Compound Angle Orientations
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021014
.10.1115/1.4041937
55.
Wang
,
Z.
,
Zhang
,
C.
,
Li
,
S. J.
,
Liu
,
J. J.
, and
Zhang
,
H. W.
,
2019
, “
Effects of Geometry Parameters on the Cooling Performance and Conjugate Thermal-Elastic Property of Double-Reverse-Jet Film Cooling
,”
J. Appl. Mech. Tech. Phys.
,
60
(
6
), pp.
1060
1067
.10.1134/S0021894419060117
56.
Yao
,
J. X.
,
Xu
,
J.
,
Zhang
,
K.
,
Lei
,
J.
, and
Wright
,
L. M.
,
2018
, “
Interaction of Flow and Film Cooling Effectiveness Between Double-Jet Film-Cooling Holes With Various Spanwise Distances
,”
ASME J. Turbomach.
,
140
(
12
) p.
121011
.10.1115/1.4041809
57.
Yao
,
J.
,
Zhang
,
K.
,
Wu
,
J.
,
Lei
,
J.
,
Fang
,
Y.
, and
Wright
,
L. M.
,
2019
, “
An Experimental Investigation on Streamwise Distance and Density Ratio Effects on Double-Jet Film-Cooling
,”
Appl. Therm. Eng.
,
156
, pp.
410
421
.10.1016/j.applthermaleng.2019.04.081
58.
Yao
,
J.
,
Su
,
P.
,
He
,
J.
,
Wu
,
J.
,
Lei
,
J.
, and
Fang
,
Y.
,
2020
, “
Experimental and Numerical Investigations on Double-Jet Film-Cooling With Different Mainstream Incidence Angles
,”
Appl. Therm. Eng.
,
166
, p.
114737
.10.1016/j.applthermaleng.2019.114737
59.
He
,
J.
,
Yao
,
J.
,
Yang
,
X.
,
Duan
,
J.
,
Lei
,
J.
, and
Xie
,
G.
,
2020
, “
Effects of Mainstream Attack Angles on Film-Cooling Effectiveness of Double-Jet Film-Cooling
,”
Int. J. Therm. Sci.
,
149
, p.
106183
.10.1016/j.ijthermalsci.2019.106183
60.
Li
,
G.-C.
, and
Zhang
,
W.
,
2010
, “
Improving Film Cooling Performance by Using One-Inlet and Double-Outlet Hole
,”
J. Therm. Sci.
,
19
(
5
), pp.
430
437
.10.1007/s11630-010-0405-x
61.
Li
,
G. C.
,
Chen
,
Y. K.
,
Kou
,
Z. H.
,
Zhang
,
W.
, and
Zhang
,
G. C.
,
2018
, “
Mechanism of Film Cooling With One Inlet and Double Outlet Hole Injection at Various Turbulence Intensities
,”
Int. J. Turbo Jet-Eng.
,
35
(
1
), pp.
1
9
.10.1515/tjj-2016-0024
62.
Abdelmohimen
,
M. A. H.
,
2017
, “
Improving Film Cooling From Compound Angle Holes by Adding Secondary Holes Branched Out From the Main Holes
,”
Heat Mass Transfer
,
53
(
5
), pp.
1805
1815
.10.1007/s00231-016-1938-7
63.
Abdelmohimen
,
M. A. H.
, and
Mohiuddin
,
A.
,
2019
, “
Experimental Investigation of Film Cooling From Compound Angle Holes Supplemented by Secondary Holes
,”
Int. J. Heat Mass Transfer
,
144
, p.
118678
.10.1016/j.ijheatmasstransfer.2019.118678
64.
Chi
,
Z.
,
Ren
,
J.
,
Jiang
,
H.
, and
Zang
,
S.
,
2016
, “
Geometrical Optimization and Experimental Validation of a Tripod Film Cooling Hole With Asymmetric Side Holes
,”
ASME J. Heat Transfer
,
138
(
6
), p.
061701
.10.1115/1.4032883
65.
Khajehhasani
,
S.
, and
Jubran
,
B.
,
2014
, “
Film Cooling From Novel Sister Shaped Single-Holes
,”
ASME
Paper No. GT2014-25971.10.1115/GT2014-25971
66.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2015
, “
Numerical Assessment of the Film Cooling Through Novel Sister-Shaped Single-Hole Schemes
,”
Numer. Heat Transfer, Part A: Appl.
,
67
(
4
), pp.
414
435
.10.1080/10407782.2014.937257
67.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2015
, “
A Numerical Investigation on the Performance of Novel Sister Shaped Single-Hole Configurations for Film Cooling Flow
,”
ASME
Paper No. IMECE2014-36263.10.1115/IMECE2014-36263
68.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2011
, “
The NEKOMIMI Cooling Technology: Cooling Holes With Ears for High-Efficient Film Cooling
,”
ASME
Paper No. GT2011-45524.10.1115/GT2011-45524
69.
Kusterer
,
K.
,
Tekin
,
N.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2012
, “
Experimental and Numerical Investigations of the NEKOMIMI Film Cooling Technology
,”
ASME
Paper No. GT2012-68400.10.1115/GT2012-68400
70.
Kusterer
,
K.
,
Tekin
,
N.
,
Wuellner
,
T.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2014
, “
NEKOMIMI Film Cooling Holes Configuration Under Conjugate Heat Transfer Conditions
,”
ASME
Paper No. GT2014-25845.10.1115/GT2014-25845
71.
Zhu
,
R.
,
Simon
,
T. W.
, and
Xie
,
G.
,
2019
, “
Influence on Film Cooling Effectiveness of Novel Holes Based on Cylindrical Configurations
,”
Numer. Heat Transfer, Part A: Appl.
,
75
(
7
), pp.
469
488
.10.1080/10407782.2019.1606629
72.
Wang
,
J.
,
Tian
,
K.
,
Luo
,
J.
, and
Sundén
,
B.
,
2019
, “
Effect of Hole Configurations on Film Cooling Performance
,”
Numer. Heat Transfer, Part A: Appl.
,
75
(
11
), pp.
725
738
.10.1080/10407782.2019.1608762
73.
Yang
,
X.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2015
, “
Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071701
.10.1115/1.4029817
74.
Cao
,
N.
,
Li
,
X.
,
Wu
,
Z.
, and
Luo
,
X.
,
2020
, “
Effect of Film Hole Geometry and Blowing Ratio on Film Cooling Performance
,”
Appl. Therm. Eng.
,
165
, p.
114578
.10.1016/j.applthermaleng.2019.114578
You do not currently have access to this content.