Abstract

The present research proposes an inverse natural convection algorithm for simultaneous estimation of correct values of Prandtl number (Pr) and Rayleigh number (Ra). The inverse problem is formulated as the minimization of appropriate functional and is solved iteratively using conjugate gradient algorithm. Since the inverse technique requires temperature data as the input parameter, this work uses schlieren experiments to measure the temperature in a water-filled, differentially heated, cubic cavity. While the proposed inverse technique may be applied for a variety of thermofluidic problems, the simulations are restricted to two-dimensional (2D), laminar-free convective flows in a 50 × 50 × 50 mm3 cavity. The present experiments restrict the wall temperature difference to 6.3 K, allowing the use of Boussinesq approximation in the inverse formulation. The proposed inverse algorithm is found to be highly accurate with an estimation error less than 10% when the measurement data contain about 5% noise.

References

1.
Ozisik
,
M. N.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
CRC Press,
Boca Raton, FL.
2.
Alifanov
,
O. M.
,
2011
,
Inverse Heat Transfer Problems
,
Springer-Verlag, Berlin.
3.
Orlande
,
H. R. B.
,
2010
, “
Inverse Problems in Heat Transfer: New Trends on Solution Methodologies and Applications
,”
ASME
Paper No. IHTC14-23349.10.1115/IHTC14-23349
4.
Tadi
,
M.
,
2017
, “
On Elliptic Inverse Heat Conduction Problems
,”
ASME J. Heat Transfer
,
139
(
7
), p.
74504
.10.1115/1.4036006
5.
Eldén
,
L.
,
1997
, “
Solving an Inverse Heat Conduction Problem by a ‘Method of Lines
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
406
412
.10.1115/1.2824112
6.
Alifanov
,
O. M.
,
1974
, “
Solution of an Inverse Problem of Heat Conduction by Iteration Methods
,”
J. Eng. Phys. Thermophys.
,
26
(
4
), pp.
471
476
.10.1007/BF00827525
7.
Liu
,
F.-B.
,
2011
, “
A Hybrid Method for the Inverse Heat Transfer of Estimating Fluid Thermal Conductivity and Heat Capacity
,”
Int. J. Therm. Sci.
,
50
(
5
), pp.
718
724
.10.1016/j.ijthermalsci.2010.11.020
8.
Li
,
H.-Y.
, and
Yan
,
W.-M.
,
2000
, “
Inverse Convection Problem for Determining Wall Heat Flux in Annular Duct Flow
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
460
464
.10.1115/1.1287169
9.
Machado
,
H. A.
, and
Orlande
,
H. R. B.
,
1997
, “
Inverse Analysis for Estimating the Timewise and Spacewise Variation of the Wall Heat Flux in a Parallel Plate Channel
,”
Int. J. Numer. Methods Heat Fluid Flow
,
7
(
7
), pp.
696
710
.10.1108/09615539710185578
10.
Huang
,
C. H.
, and
Özisik
,
M. N.
,
1992
, “
Inverse Problem of Determining Unknown Wall Heat Flux in Laminar Flow Through a Parallel Plate Duct
,”
Numer. Heat Transfer
,
21
(
1
), pp.
55
70
.10.1080/10407789208944865
11.
Colaco
,
M. J.
, and
Orlande
,
H. R. B.
,
1999
, “
Comparison of Different Versions of the Conjugate Gradient Method of Function Estimation
,”
Numer. Heat Transfer, Part A
,
36
(
2
), pp.
229
249
.10.1080/104077899274859
12.
Su Antônio José da Silva Neto
,
J.
,
2001
, “
Simultaneous Estimation of Inlet Temperature and Wall Heat Flux in Turbulent Circular Pipe Flow
,”
Numer. Heat Transfer, Part A
,
40
(
7
), pp.
751
766
.10.1080/104077801753289837
13.
Park
,
H. M.
, and
Chung
,
O. Y.
,
1999
, “
An Inverse Natural Convection Problem of Estimating the Strength of a Heat Source
,”
Int. J. Heat Mass Transfer
,
42
(
23
), pp.
4259
4273
.10.1016/S0017-9310(99)00100-3
14.
Li
,
Z. R.
,
Prud'homme
,
M.
, and
Nguyen
,
T. H.
,
1995
, “
A Numerical Solution for the Inverse Natural-Convection Problem
,”
Numer. Heat Transfer, Part B
,
28
(
3
), pp.
307
321
.10.1080/10407799508928836
15.
Prud'Homme
,
M.
, and
Hung Nguyen
,
T.
,
1997
, “
Whole Time-Domain Approach to the Inverse Natural Convection Problem
,”
Numer. Heat Transfer, Part A
,
32
(
2
), pp.
169
186
.10.1080/10407789708913886
16.
Nguyen
,
T. H.
,
1995
, “
Optimization Approach to the Inverse Convection Problem
,”
Proceedings of the International Workshop on Inverse Problems
, HoChiMinh City, Vietnam, pp.
185
195
.
17.
Park
,
H. M.
, and
Chung
,
O. Y.
,
1999
, “
Inverse Natural Convection Problem of Estimating Wall Heat Flux Using a Moving Sensor
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
828
836
.10.1115/1.2826072
18.
Prud'homme
,
M.
, and
Nguyen
,
T. H.
,
2001
, “
Solution of Inverse Free Convection Problems by Conjugate Gradient Method: Effects of Rayleigh Number
,”
Int. J. Heat Mass Transfer
,
44
(
11
), pp.
2011
2027
.10.1016/S0017-9310(00)00266-0
19.
Moutsoglou
,
A.
,
1989
, “
An Inverse Convection Problem
,”
ASME J. Heat Transfer
,
111
(
1
), pp.
37
43
.10.1115/1.3250655
20.
Fletcher
,
R.
, and
Reeves
,
C. M.
,
1964
, “
Function Minimization by Conjugate Gradients
,”
Comput. J.
,
7
(
2
), pp.
149
154
.10.1093/comjnl/7.2.149
21.
Hoffmann
,
K. A.
, and
Chiang
,
S. T.
,
2000
, “
Computational Fluid Dynamics Volume I
,” Engineering Education System, Wichita, KS.
22.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.10.1016/S0017-9310(03)00156-X
23.
de Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.10.1002/fld.1650030305
24.
Barakos
,
G.
,
Mitsoulis
,
E.
, and
Assimacopoulos
,
D.
,
1994
, “
Natural Convection Flow in a Square Cavity Revisited: Laminar and Turbulent Models With Wall Functions
,”
Int. J. Numer. Methods Fluids
,
18
(
7
), pp.
695
719
.10.1002/fld.1650180705
25.
Bharti
,
O. S.
,
Saha
,
A. K.
,
Das
,
M. K.
, and
Bansal
,
S.
,
2018
, “
Simultaneous Measurement of Velocity and Temperature Fields During Natural Convection in a Water-Filled Cubical Cavity
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
272
286
.10.1016/j.expthermflusci.2018.07.039
26.
Huang
,
C.-H.
, and
Jan-Yuan
,
Y.
,
1995
, “
An Inverse Problem in Simultaneously Measuring Temperature-Dependent Thermal Conductivity and Heat Capacity
,”
Int. J. Heat Mass Transfer
,
38
(
18
), pp.
3433
3441
.10.1016/0017-9310(95)00059-I
You do not currently have access to this content.