Heat transfer and flow characteristics of Taylor flows in vertical capillaries with tube diameters ranging from 0.5 mm to 2 mm were studied numerically with the volume of fluid (VOF) method. Streamlines, bubble shapes, pressure drops, and heat transfer characteristics of the fully developed gas–liquid Taylor flow were investigated in detail. The numerical data fitted well with experimental results and with the predicted values of empirical correlations. The results indicate that the dimensionless liquid film thickness and bubble rising velocity increase with increasing capillary number. Pressure drops in liquid slug region are higher than the single-phase flow because of the Laplace pressure drop. The flow pattern dependent model and modified flow separation model which takes Bond number and Reynolds number into account can predict the numerical pressure drops well. Compared with the single-phase flow, less time is needed for the Taylor flow to reach a thermal fully developed status. The Nusselt number of Taylor flow is about 1.16–3.5 times of the fully developed single-phase flow with a constant wall heat flux. The recirculation regions in the liquid and gas slugs can enhance the heat transfer coefficient and accelerate the development of the thermal boundary layer.

References

1.
Triplett
,
K.
,
Ghiaasiaan
,
S.
,
Abdel-Khalik
,
S.
, and
Sadowski
,
D.
,
1999
, “
Gas–Liquid Two-Phase Flow in Microchannels—Part I: Two-Phase Flow Patterns
,”
Int. J. Multiphase Flow
,
25
(
3
), pp.
377
394
.
2.
Zhao
,
T. S.
, and
Bi
,
Q. C.
,
2001
, “
Co-Current Air–Water Two-Phase Flow Patterns in Vertical Triangular Microchannels
,”
Int. J. Multiphase Flow
,
27
(
5
), pp.
765
782
.
3.
Liu
,
H.
,
Vandu
,
C. O.
, and
Krishna
,
R.
,
2005
, “
Hydrodynamics of Taylor Flow in Vertical Capillaries: Flow Regimes, Bubble Rise Velocity, Liquid Slug Length, and Pressure Drop
,”
Ind. Eng. Chem. Res.
,
44
(
14
), pp.
4884
4897
.
4.
Kreutzer
,
M. T.
,
Kapteijn
,
F.
,
Moulijn
,
J. A.
,
Kleijn
,
C. R.
, and
Heiszwolf
,
J. J.
,
2005
, “
Inertial and Interfacial Effects on Pressure Drop of Taylor Flow in Capillaries
,”
AlChE J.
,
51
(
9
), pp.
2428
2440
.
5.
Walsh
,
E.
,
Muzychka
,
Y.
,
Walsh
,
P.
,
Egan
,
V.
, and
Punch
,
J.
,
2009
, “
Pressure Drop in Two Phase Slug/Bubble Flows in Mini Scale Capillaries
,”
Int. J. Multiphase Flow
,
35
(
10
), pp.
879
884
.
6.
Warnier
,
M. J. F.
,
de Croon
,
M.
,
Rebrov
,
E. V.
, and
Schouten
,
J. C.
,
2010
, “
Pressure Drop of Gas-Liquid Taylor Flow in Round Micro-Capillaries for Low to Intermediate Reynolds Numbers
,”
Microfluid. Nanofluid.
,
8
(
1
), pp.
33
45
.
7.
Walsh
,
P. A.
,
Walsh
,
E. J.
, and
Muzychka
,
Y. S.
,
2010
, “
Heat Transfer Model for Gas–Liquid Slug Flows Under Constant Flux
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3193
3201
.
8.
Lim
,
Y. S.
,
Yu
,
S. C. M.
, and
Nguyen
,
N. T.
,
2013
, “
Flow Visualization and Heat Transfer Characteristics of Gas–Liquid Two-Phase Flow in Microtube Under Constant Heat Flux at Wall
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
350
359
.
9.
Leung
,
S. S.
,
Gupta
,
R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2011
, “
Effect of Flow Characteristics on Taylor Flow Heat Transfer
,”
Ind. Eng. Chem. Res.
,
51
(
4
), pp.
2010
2020
.
10.
Leung
,
S. S. Y.
,
Liu
,
Y.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2010
, “
Heat Transfer in Well-Characterised Taylor Flow
,”
Chem. Eng. Sci.
,
65
(
24
), pp.
6379
6388
.
11.
Talimi
,
V.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2012
, “
A Review on Numerical Studies of Slug Flow Hydrodynamics and Heat Transfer in Microtubes and Microchannels
,”
Int. J. Multiphase Flow
,
39
, pp.
88
104
.
12.
Bandara
,
T.
,
Nguyen
,
N. T.
, and
Rosengarten
,
G.
,
2015
, “
Slug Flow Heat Transfer Without Phase Change in Microchannels: A Review
,”
Chem. Eng. Sci.
,
126
, pp.
283
295
.
13.
Santos
,
R. M.
, and
Kawaji
,
M.
,
2010
, “
Numerical Modeling and Experimental Investigation of Gas-Liquid Slug Formation in a Microchannel T-Junction
,”
Int. J. Multiphase Flow
,
36
(
4
), pp.
314
323
.
14.
Gupta
,
R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2010
, “
CFD Modelling of Flow and Heat Transfer in the Taylor Flow Regime
,”
Chem. Eng. Sci.
,
65
(
6
), pp.
2094
2107
.
15.
Qian
,
D.
, and
Lawal
,
A.
,
2006
, “
Numerical Study on Gas and Liquid Slugs for Taylor Flow in a T-Junction Microchannel
,”
Chem. Eng. Sci.
,
61
(
23
), pp.
7609
7625
.
16.
Shao
,
N.
,
Salman
,
W.
,
Gavriilidis
,
A.
, and
Angeli
,
P.
,
2008
, “
CFD Simulations of the Effect of Inlet Conditions on Taylor Flow Formation
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1603
1611
.
17.
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2017
, “
CFD Simulation of Taylor Flow: Should the Liquid Film Be Captured or Not?
,”
Chem. Eng. Sci.
,
167
, pp.
334
335
.
18.
Araújo
,
J. D. P.
,
Miranda
,
J. M.
,
Pinto
,
A. M. F. R.
, and
Campos
,
J. B. L. M.
,
2012
, “
Wide-Ranging Survey on the Laminar Flow of Individual Taylor Bubbles Rising Through Stagnant Newtonian Liquids
,”
Int. J. Multiphase Flow
,
43
, pp.
131
148
.
19.
Asadolahi
,
A. N.
,
Gupta
,
R.
,
Leung
,
S. S. Y.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2012
, “
Validation of a CFD Model of Taylor Flow Hydrodynamics and Heat Transfer
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
541
552
.
20.
Asadolahi
,
A. N.
,
Gupta
,
R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2011
, “
CFD Approaches for the Simulation of Hydrodynamics and Heat Transfer in Taylor Flow
,”
Chem. Eng. Sci.
,
66
(
22
), pp.
5575
5584
.
21.
Gupta
,
R.
,
Leung
,
S. S. Y.
,
Manica
,
R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2013
, “
Hydrodynamics of Liquid–Liquid Taylor Flow in Microchannels
,”
Chem. Eng. Sci.
,
92
, pp.
180
189
.
22.
Dai
,
Z.
,
Guo
,
Z.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2015
, “
Taylor Flow Heat Transfer in Microchannels—Unification of Liquid–Liquid and Gas–Liquid Results
,”
Chem. Eng. Sci.
,
138
, pp.
140
152
.
23.
Liu
,
D.
, and
Wang
,
S.
,
2008
, “
Hydrodynamics of Taylor Flow in Noncircular Capillaries
,”
Chem. Eng. Process.: Process Intensif.
,
47
(
12
), pp.
2098
2106
.
24.
Zhang
,
J.
,
Fletcher
,
D. F.
, and
Li
,
W.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of Gas–Liquid Taylor Flow in Mini Ducts of Square and Rectangular Cross-Sections
,”
Int. J. Heat Mass Transfer
,
103
, pp.
45
56
.
25.
Falconi
,
C. J.
,
Lehrenfeld
,
C.
,
Marschall
,
H.
,
Meyer
,
C.
,
Abiev
,
R.
,
Bothe
,
D.
,
Reusken
,
A.
,
Schlüter
,
M.
, and
Wörner
,
M.
,
2016
, “
Numerical and Experimental Analysis of Local Flow Phenomena in Laminar Taylor Flow in a Square Mini-Channel
,”
Phys. Fluids
,
28
(
1
), p.
012109
.
26.
Che
,
Z.
,
Wong
,
T. N.
,
Nguyen
,
N. T.
, and
Yang
,
C.
,
2015
, “
Three Dimensional Features of Convective Heat Transfer in Droplet-Based Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
86
, pp.
455
464
.
27.
Taha
,
T.
, and
Cui
,
Z. F.
,
2006
, “
CFD Modelling of Slug Flow Inside Square Capillaries
,”
Chem. Eng. Sci.
,
61
(
2
), pp.
665
675
.
28.
Taha
,
T.
, and
Cui
,
Z.
,
2004
, “
Hydrodynamics of Slug Flow Inside Capillaries
,”
Chem. Eng. Sci.
,
59
(
6
), pp.
1181
1190
.
29.
Han
,
Y.
, and
Shikazono
,
N.
,
2009
, “
Measurement of the Liquid Film Thickness in Micro Tube Slug Flow
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
842
853
.
30.
Aussillous
,
P.
, and
Quéré
,
D.
,
2000
, “
Quick Deposition of a Fluid on the Wall of a Tube
,”
Phys. Fluids
,
12
(
10
), pp.
2367
2371
.
31.
Langewisch
,
D. R.
, and
Buongiorno
,
J.
,
2015
, “
Prediction of Film Thickness, Bubble Velocity, and Pressure Drop for Capillary Slug Flow Using a CFD-Generated Database
,”
Int. J. Heat Fluid Flow
,
54
, pp.
250
257
.
32.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
33.
Jeon
,
S.-S.
,
Kim
,
S.-J.
, and
Park
,
G.-C.
,
2011
, “
Numerical Study of Condensing Bubble in Subcooled Boiling Flow Using Volume of Fluid Model
,”
Chem. Eng. Sci.
,
66
(
23
), pp.
5899
5909
.
34.
Brackbill
,
J.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
35.
Zhang
,
J.
, and
Li
,
W.
,
2016
, “
Investigation of Hydrodynamic and Heat Transfer Characteristics of Gas–Liquid Taylor Flow in Vertical Capillaries
,”
Int. Commun. Heat Mass
,
74
, pp.
1
10
.
36.
Laborie
,
S.
,
Cabassud
,
C.
,
Durand-Bourlier
,
L.
, and
Lainé
,
J. M.
,
1999
, “
Characterisation of Gas–Liquid Two-Phase Flow Inside Capillaries
,”
Chem. Eng. Sci.
,
54
(
23
), pp.
5723
5735
.
37.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Correlation for Adiabatic Two-Phase Pressure Drop in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2732
2739
.
38.
Kim
,
S.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Mini/Micro-Channel Saturated Flow Boiling
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
718
734
.
39.
Hughmark
,
G. A.
,
1965
, “
Holdup and Heat Transfer in Horizontal Slug Gas-Liquid Flow
,”
Chem. Eng. Sci.
,
20
(
12
), pp.
1007
1010
.
40.
Kreutzer
,
M. T.
,
Du
,
P.
,
Heiszwolf
,
J. J.
,
Kapteijn
,
F.
, and
Moulijn
,
J. A.
,
2001
, “
Mass Transfer Characteristics of Three-Phase Monolith Reactors
,”
Chem. Eng. Sci.
,
56
(
21–22
), pp.
6015
6023
.
You do not currently have access to this content.