We present lattice Boltzmann (LB) simulations for the mass transfer coefficient from bulk flows to pore surfaces in chemically reactive flows for both ordered and disordered porous structures. The ordered porous structure under consideration consists of cylinders in a staggered arrangement and in a line arrangement, while the disordered one is composed of randomly placed cylinders. Results show that the ordered porous structure of staggered cylinders exhibits a larger mass transfer coefficient than ordered porous structure of inline cylinders does. It is also found that in the disordered porous structures, the Sherwood number (Sh) increases linearly with Reynolds number (Re) at the creeping flow regime; the Sh and Re exhibit a one-half power law dependence at the inertial flow regime. Meanwhile, for Schmidt number (Sc) between 1 and 10, the Sh is proportional to Sc0.8; for Sc between 10 and 100, the Sh is proportional to Sc0.3.

References

1.
Zhao
,
T. S.
,
Xu
,
C.
,
Chen
,
R.
, and
Yang
,
W. W.
,
2009
, “
Mass Transport Phenomena in Direct Methanol Fuel Cells
,”
Prog. Energy Combust. Sci.
,
35
(
3
), pp.
275
292
.
2.
Xu
,
Q.
, and
Zhao
,
T.
,
2015
, “
Fundamental Models for Flow Batteries
,”
Prog. Energy Combust. Sci.
,
49
, pp.
40
58
.
3.
Whitaker
,
S.
,
1999
,
The Method of Volume Averaging
, Vol.
13
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
4.
Davit
,
Y.
,
Bell
,
C. G.
,
Byrne
,
H. M.
,
Chapman
,
L. A.
,
Kimpton
,
L. S.
,
Lang
,
G. E.
,
Leonard
,
K. H.
,
Oliver
,
J. M.
,
Pearson
,
N. C.
,
Shipley
,
R. J.
, Waters, S. L., Whiteley, J. P., Wood, B. D., and Quintard, M.,
2013
, “
Homogenization Via Formal Multiscale Asymptotics and Volume Averaging: How Do the Two Techniques Compare?
,”
Adv. Water Resour.
,
62
(Pt. B), pp.
178
206
.
5.
Xu
,
Q.
, and
Zhao
,
T.
,
2013
, “
Determination of the Mass-Transport Properties of Vanadium Ions Through the Porous Electrodes of Vanadium Redox Flow Batteries
,”
Phys. Chem. Chem. Phys.
,
15
(
26
), pp.
10841
10848
.
6.
Rashapov
,
R. R.
, and
Gostick
,
J. T.
,
2016
, “
In-Plane Effective Diffusivity in PEMFC Gas Diffusion Layers
,”
Transp. Porous Media
,
115
(3), pp.
411
433
.
7.
Mattila
,
K.
,
Puurtinen
,
T.
,
Hyväluoma
,
J.
,
Surmas
,
R.
,
Myllys
,
M.
,
Turpeinen
,
T.
,
Robertsen
,
F.
,
Westerholm
,
J.
, and
Timonen
,
J.
,
2016
, “
A Prospect for Computing in Porous Materials Research: Very Large Fluid Flow Simulations
,”
J. Comput. Sci.
,
12
, pp.
62
76
.
8.
Xu
,
A.
,
Shyy
,
W.
, and
Zhao
,
T.
,
2017
, “
Lattice Boltzmann Modeling of Transport Phenomena in Fuel Cells and Flow Batteries
,”
Acta Mech. Sin.
,
33
(
3
), pp.
555
574
.
9.
Pan
,
C.
,
Luo
,
L.-S.
, and
Miller
,
C. T.
,
2006
, “
An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation
,”
Comput. Fluids
,
35
(
8
), pp.
898
909
.
10.
Chai
,
Z.
,
Shi
,
B.
,
Lu
,
J.
, and
Guo
,
Z.
,
2010
, “
Non-Darcy Flow in Disordered Porous Media: A Lattice Boltzmann Study
,”
Comput. Fluids
,
39
(
10
), pp.
2069
2077
.
11.
Wang
,
M.
,
Wang
,
J.
,
Pan
,
N.
, and
Chen
,
S.
,
2007
, “
Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,”
Phys. Rev. E
,
75
(
3
), p.
036702
.
12.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2017
, “
Pore Scale Investigation of Heat Conduction of High Porosity Open-Cell Metal Foam/Paraffin Composite
,”
ASME J. Heat Transfer
,
139
(
9
), p.
091302
.
13.
Kuwahara
,
F.
,
Shirota
,
M.
, and
Nakayama
,
A.
,
2001
, “
A Numerical Study of Interfacial Convective Heat Transfer Coefficient in Two-Energy Equation Model for Convection in Porous Media
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
1153
1159
.
14.
Saito
,
M. B.
, and
De Lemos
,
M. J.
,
2006
, “
A Correlation for Interfacial Heat Transfer Coefficient for Turbulent Flow Over an Array of Square Rods
,”
ASME J. Heat Transfer
,
128
(
5
), pp.
444
452
.
15.
Pallares
,
J.
, and
Grau
,
F.
,
2010
, “
A Modification of a Nusselt Number Correlation for Forced Convection in Porous Media
,”
Int. Commun. Heat Mass Transfer
,
37
(
9
), pp.
1187
1190
.
16.
Torabi
,
M.
,
Torabi
,
M.
, and
Peterson
,
G.
,
2016
, “
Heat Transfer and Entropy Generation Analyses of Forced Convection Through Porous Media Using Pore Scale Modeling
,”
ASME J. Heat Transfer
,
139
(
1
), p.
012601
.
17.
Jeong
,
N.
,
Choi
,
D. H.
, and
Lin
,
C.-L.
,
2008
, “
Estimation of Thermal and Mass Diffusivity in a Porous Medium of Complex Structure Using a Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
51
(
15
), pp.
3913
3923
.
18.
Chai
,
Z.
,
Huang
,
C.
,
Shi
,
B.
, and
Guo
,
Z.
,
2016
, “
A Comparative Study on the Lattice Boltzmann Models for Predicting Effective Diffusivity of Porous Media
,”
Int. J. Heat Mass Transfer
,
98
, pp.
687
696
.
19.
Grucelski
,
A.
, and
Pozorski
,
J.
,
2015
, “
Lattice Boltzmann Simulations of Heat Transfer in Flow Past a Cylinder and in Simple Porous Media
,”
Int. J. Heat Mass Transfer
,
86
, pp.
139
148
.
20.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Le Person
,
S.
,
2008
, “
Numerical Study of Heat Transfer Over Banks of Rods in Small Reynolds Number Cross-Flow
,”
Int. J. Heat Mass Transfer
,
51
(
3
), pp.
853
864
.
21.
Sheikholeslami
,
M.
, and
Shehzad
,
S.
,
2017
, “
Magnetohydrodynamic Nanofluid Convection in a Porous Enclosure Considering Heat Flux Boundary Condition
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1261
1269
.
22.
Xu
,
A.
,
Shi
,
L.
, and
Zhao
,
T.
,
2018
, “
Lattice Boltzmann Simulation of Shear Viscosity of Suspensions Containing Porous Particles
,”
Int. J. Heat Mass Transfer
,
116
, pp.
969
976
.
23.
Qian
,
Y.
,
d'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier-Stokes Equation
,”
EPL (Europhys. Lett.)
,
17
(
6
), pp.
479
572
.
24.
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
,
61
(
6
), p.
6546
.
25.
Wang
,
J.
,
Wang
,
D.
,
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2013
, “
Lattice Boltzmann Simulations of Thermal Convective Flows in Two Dimensions
,”
Comput. Math. Appl.
,
65
(
2
), pp.
262
286
.
26.
Xu
,
A.
,
Shi
,
L.
, and
Zhao
,
T.
,
2017
, “
Accelerated Lattice Boltzmann Simulation Using GPU and OpenACC With Data Management
,”
Int. J. Heat Mass Transfer
,
109
, pp.
577
588
.
27.
Zhang
,
T.
,
Shi
,
B.
,
Guo
,
Z.
,
Chai
,
Z.
, and
Lu
,
J.
,
2012
, “
General Bounce-Back Scheme for Concentration Boundary Condition in the Lattice-Boltzmann Method
,”
Phys. Rev. E
,
85
(
1
), p.
016701
.
28.
Patankar
,
S.
,
Liu
,
C.
, and
Sparrow
,
E.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
180
186
.
29.
Zhang
,
J.
, and
Kwok
,
D. Y.
,
2006
, “
Pressure Boundary Condition of the Lattice Boltzmann Method for Fully Developed Periodic Flows
,”
Phys. Rev. E
,
73
(
4
), p.
047702
.
30.
Yoshino
,
M.
, and
Inamuro
,
T.
,
2003
, “
Lattice Boltzmann Simulations for Flow and Heat/Mass Transfer Problems in a Three-Dimensional Porous Structure
,”
Int. J. Numer. Methods Fluids
,
43
(
2
), pp.
183
198
.
31.
Guo
,
Z.-L.
,
Zheng
,
C.-G.
, and
Shi
,
B.-C.
,
2002
, “
Non-Equilibrium Extrapolation Method for Velocity and Pressure Boundary Conditions in the Lattice Boltzmann Method
,”
Chin. Phys.
,
11
(
4
). pp.
366
–374.
32.
Nakayama
,
A.
,
2014
, “
A Note on the Confusion Associated With the Interfacial Heat Transfer Coefficient for Forced Convection in Porous Media
,”
Int. J. Heat Mass Transfer
,
79
, pp.
1
2
.
33.
Lange
,
K. J.
,
Sui
,
P.-C.
, and
Djilali
,
N.
,
2010
, “
Pore Scale Simulation of Transport and Electrochemical Reactions in Reconstructed PEMFC Catalyst Layers
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
B1434
B1442
.
34.
Chen
,
L.
,
Wu
,
G.
,
Holby
,
E. F.
,
Zelenay
,
P.
,
Tao
,
W.-Q.
, and
Kang
,
Q.
,
2015
, “
Lattice Boltzmann Pore-Scale Investigation of Coupled Physical-Electrochemical Processes in C/Pt and Non-Precious Metal Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells
,”
Electrochimica Acta
,
158
, pp.
175
186
.
You do not currently have access to this content.