In this paper, the steady magnetohydrodynamic (MHD) stagnation point flow of an incompressible viscous electrically conducting fluid over a stretching sheet has been investigated. Velocity and thermal slip conditions have been incorporated in the study. The effects of induced magnetic field and thermal radiation have also been duly taken into account. The nonlinear partial differential equations arising out of the mathematical analysis of the problem are transformed into a system of nonlinear ordinary differential equations by using similarity transformation and boundary layer approximation. These equations are solved by developing an appropriate numerical method. Considering an illustrative example, numerical results are obtained for velocity, temperature, skin friction, and Nusselt number by considering a chosen set of values of various parameters involved in the study. The results are presented graphically/in tabular form.

References

1.
Sakiadis
,
B. C.
,
1961
, “
Boundary Layer Behavior on Continuous Solid Surfaces: I. Boundary Layer Equations for Two Dimensional and Axisymmetric Flow
,”
AICHE J.
,
7
, pp.
26
28
.10.1002/aic.690070108
2.
Sakiadis
,
B. C.
,
1961
, “
Boundary Layer Behavior on Continuous Solid Surfaces: II. Boundary Layer on a Continuous Flat Surface
,”
AICHE J.
,
7
, pp.
221
225
.10.1002/aic.690070211
3.
Tsou
,
F. K.
,
Sparrow
,
E. M.
, and
Goldstein
,
R. J.
,
1967
, “
Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface
,”
Int. J. Heat Mass Transfer
,
10
, pp.
219
223
.10.1016/0017-9310(67)90100-7
4.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
, pp.
645
647
.10.1007/BF01587695
5.
Tzirtzilakis
,
E. E.
, and
Kafoussias
,
N. G.
,
2003
, “
Biomagnetic Fluid Flow Over a Stretching Sheet With Nonlinear Temperature Dependent Magnetization
,”
J. Appl. Math. Mech.
,
54
, pp.
551
565
.10.1007/s0003300311005
6.
Tzirtzilakis
,
E. E.
, and
Kafoussias
,
N. G.
,
2010
, “
Three-Dimensional Magnetic Fluid Boundary Layer Flow Over a Linearly Stretching Sheet
,”
ASME J. Heat Transfer
,
132
, p.
011702
.10.1115/1.3194765
7.
Tzirtzilakis
,
E. E.
, and
Tanoudis
,
G. B.
,
2003
, “
Numerical Study of Biomagnetic Fluid Flow Over a Stretching Sheet With Heat Transfer
,”
Int. J. Numer. Methods Heat Fluid Flow
,
13
, pp.
830
848
.10.1108/09615530310502055
8.
Beavers
,
G. S.
, and
Joseph
,
D. D.
,
1967
, “
Boundary Conditions at a Natural Permeable Wall
,”
J. Fluid Mech.
,
30
, pp.
197
207
.10.1017/S0022112067001375
9.
Misra
,
J. C.
,
Patra
,
M. K.
, and
Misra
,
S. C.
,
1993
, “
A Non-Newtonian Fluid Model for Blood Flow Through Arteries Under the Stenotic Conditions
,”
J. Biomech.
,
26
, pp.
1129
1141
.10.1016/S0021-9290(05)80011-9
10.
Misra
,
J. C.
, and
Shit
,
G. C.
,
2007
, “
Role of Slip Velocity in Blood Flow Through Stenosed Arteries: A Non-Newtonian Model
,”
J. Mech. Med. Biol.
,
7
, pp.
337
353
.10.1142/S0219519407002303
11.
Misra
,
J. C.
, and
Kar
,
B. K.
,
1989
, “
Momentum Integral Method for Studying Flow Characteristics of Blood Through a Stenosed Vessel
,”
Biorheology
,
26
, pp.
23
25
.
12.
Vand
,
V.
,
1948
, “
Viscosity of Solutions and Suspensions
,”
J. Phys. Colloid chem.
52
, pp.
277
321
.10.1021/j150458a001
13.
Nubar
,
Y.
,
1971
, “
Blood Flow, Slip, and Viscometry
,”
J. Biophys.
,
11
, pp.
252
264
.10.1016/S0006-3495(71)86212-4
14.
Brunn
,
P.
,
1975
, “
The Velocity Slip of Polar Fluids
,”
Rheol. Acta
,
14
, pp.
1039
1054
.10.1007/BF01515899
15.
Ebart
,
W. A.
, and
Sparrow
,
E. M.
,
1965
, “
Slip Flow in Rectangular and Annular Ducts
,”
J. Basic Eng.
,
87
, pp.
1018
1024
.10.1115/1.3650793
16.
Sparrow
,
E. M.
,
Beavers
,
G. S.
, and
Hung
,
L. Y.
,
1971
, “
Flow About a Porous-Surfaced Rotating Disk
,”
Int. J. Heat Mass Transfer
,
14
, pp.
993
996
.10.1016/0017-9310(71)90126-8
17.
Sparrow
,
E. M.
,
Beavers
,
G. S.
, and
Hung
,
L. Y.
,
1971
, “
Channel and Tube Flows With Surface Mass Transfer and Velocity Slip
,”
Phys. Fluids
,
14
, pp.
1312
1319
.10.1063/1.1693607
18.
Wang
,
C. Y.
,
2002
, “
Stagnation Flow With Slip: Exact Solution of Navier-Stokes Equations
,”
Chem. Eng. Sci.
,
57
, pp.
3745
3747
.10.1007/PL00012632
19.
Ramachandran
,
N.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1988
, “
Mixed Convection in Stagnation Flows Adjacent to a Vertical Surfaces
,”
ASME J. Heat Transfer
,
110
, pp.
373
377
.10.1115/1.3250494
20.
Chiam
,
T. C.
,
1994
, “
Stagnation-Point Flow Towards a Stretching Plate
,”
J. Phys. Soc. Jpn.
,
63
, pp.
2443
2444
.10.1143/JPSJ.63.2443
21.
Chen
,
C. H.
,
2010
, “
Combined Effects of Joule Heating and Viscous Dissipation on Magnetohydrodynamic Flow Past a Permeable, Stretching Surface With Free Convection and Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
132
, p.
064503
.10.1115/1.4000946
22.
Lok
,
Y. Y.
,
Amin
,
N.
,
Campean
,
D.
, and
Pop
,
I.
,
2005
, “
Steady Mixed Convection Flow of a Micropolar Fluid Near the Stagnation Point on a Vertical Surface
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
, pp.
654
670
.10.1108/09615530510613861
23.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2008
, “
Magnetohydrodynamic (MHD) Flow of a Micropolar Fluid Towards a Stagnation Point on a Vertical Surface
,”
Comput. Math. Appl.
,
56
, pp.
3188
3194
.10.1016/j.camwa.2008.09.013
24.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2007
, “
Mixed Convection on the Stagnation Point Flow Toward a Vertical, Continuously Stretching Sheet
,”
ASME J. Heat Transfer
,
129
, pp.
1087
1090
.10.1115/1.2737482
25.
Takhar
,
H. S.
,
Kumari
,
M.
, and
Nath
,
G.
,
1993
, “
Unsteady Free Convection Flow Under the Influence of a Magnetic Field
,”
Arch. Appl. Mech.
,
63
, pp.
313
321
.10.1007/BF00793897
26.
Kumari
,
M.
, and
Nath
,
G.
,
2009
, “
Steady Mixed Convection Stagnation-Point Flow of Upper Convected Maxwell Fluids With Magnetic Field
,”
Int. J. Non-Linear Mech.
,
44
, pp.
1048
1055
.10.1016/j.ijnonlinmec.2009.08.002
27.
Cobble
,
M. H.
,
1979
, “
Free Convection With Mass Transfer Under the Influence of a Magnetic Field
,”
Nonlinear Anal. Theory, Methods Appl.
,
3
, pp.
135
143
.10.1016/0362-546X(79)90043-9
28.
Davies
,
T. V.
,
1962
, “
The Magneto-Hydrodynamic Boundary Layer in the Two-Dimensional Steady Flow Past a Semi-Infinite Flat Plate I, Uniform Conditions at Infinity
,”
Proc. R. Soc. London
,
273
, pp.
496
508
.
29.
Datti
,
P. S.
,
Prasad
,
K. V.
,
Abel
,
M. S.
, and
Joshi
,
A.
,
2004
, “
MHD Visco-Elastic Fluid Flow Over a Non-Isothermal Stretching Sheet
,”
Int. J. Eng. Sci.
,
42
, pp.
935
946
.10.1016/j.ijengsci.2003.09.008
30.
Hartmann
,
J.
,
1937
, “
Hg-Dynamics I, Theory of the Laminar Flow of an Electrically Conducting Liquid in a Homogenous Magnetic Field
,”
Mat. Fys. Medd. K. Dan. Vidensk. Selsk.
,
15
, pp.
1
28
.
31.
Kafoussias
,
N. G.
, and
Williams
,
E. M.
,
1993
, “
Improved Approximation Technique to Obtain Numerical Solution of a Class of Two-Point Boundary Value Similarity Problems in Fluid Mechanics
,”
Int. J. Numer. Methods Fluids
,
17
(
2
), pp.
145
162
.10.1002/fld.1650170204
32.
Hayat
,
T.
,
Qasim
,
M.
, and
Mesloub
,
S.
,
2011
, “
MHD Flow and Heat Transfer Over Permeable Stretching Sheet With Induced Magnetic Field
,”
Int. J. Numer. Methods Fluids
,
66
, pp.
963
975
.10.1002/fld.2294
33.
Ali
,
F. M.
,
Nazar
,
R.
,
Arifin
,
N. M.
, and
Pop
,
I.
,
2011
, “
MHD Stagnation-Point Flow and Heat Transfer Towards Stretching Sheet With Induced Magnetic Field
,”
Appl. Math. Mech.
,
32
(
4
), pp.
409
418
.10.1007/s10483-011-1426-6
You do not currently have access to this content.