Because of their light weight, open porosity, high surface area per unit volume, and thermal characteristics, metal foams are a promising material for many industrial applications involving fluid flow and heat transfer. The pressure drop and heat transfer in porous media have inspired a number of experimental and numerical studies, and many models have been proposed in the literature that correlate the pressure gradient and the heat transfer coefficient with the mean cell size and porosity. However, large differences exist among results predicted by different models, and most studies are based on idealized periodic cell structures. In this study, the true three-dimensional microstructure of the metal foam is obtained by employing x-ray computed microtomography (XCT). This is the “real” structure. For comparison, ideal Kelvin foam structures are developed in the free-to-use software “surface evolver” surface energy minimization program. These are “ideal” structures. Pressure drop and heat transfer are then investigated in each structure using the CFD module of COMSOL® Multiphysics code. A comparison between the numerical predictions from the real and ideal geometries is carried out. The predictions showed that heat transfer characteristics are very close for low values of Reynolds number, but larger Reynolds numbers create larger differences between the results of the ideal and real structures. Conversely, the differences in pressure drop at any Reynolds number are nearly 100%. Results from the models are then validated by comparing them with experimental results taken from the literature. The validation suggests that the ideal structure poorly predicts the heat transfer and pressure drops.

References

1.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
2.
Gauthier
,
S.
,
Nicolle
,
A.
, and
Baillis
,
D.
,
2008
, “
Investigation of the Flame Structure and Nitrogen Oxides Formation in Lean Porous Premixed Combustion of Natural Gas/Hydrogen Blends
,”
Int. J. Hydrogen Energy
,
33
(
18
), pp.
4893
4905
.10.1016/j.ijhydene.2008.06.012
3.
Fuller
,
A. J.
,
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2005
, “
Measurement and Interpretation of the Heat Transfer Coefficients of Metal Foams
,”
J. Mech. Eng. Sci.
,
219
(
2
), pp.
183
191
.10.1243/095440605X8414
4.
Kurtbasa
,
I.
, and
Celikb
,
N.
,
2009
, “
Experimental Investigation of Forced and Mixed Convection Heat Transfer in a Foam-Filled Horizontal Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1313
1325
.10.1016/j.ijheatmasstransfer.2008.07.050
5.
Hsieh
,
W. H.
,
Wu
,
J. Y.
,
Shih
,
W. H.
, and
Chiu
,
W. C.
,
2004
, “
Experimental Investigation of Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5149
5157
.10.1016/j.ijheatmasstransfer.2004.04.037
6.
Poulikakos
,
D.
, and
Kazmierczak
,
M.
,
1987
, “
Forced Convection in a Duct Partially Filled With a Porous Material
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
653
662
.10.1115/1.3248138
7.
Kuznetsov
,
A. V.
,
1998
, “
Analytical Study of Fluid Flow and Heat Transfer During Forced Convection in a Composite Channel Partly Filled With a Brinkman–Forchheimer Porous Medium
,”
Flow, Turbul. Combust.
,
60
(
2
), pp.
173
192
.10.1023/A:1009998703180
8.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Kim
,
J. H.
,
2001
, “
Forced Convection From Aluminum Foam Materials in an Asymmetrically Heated Channel
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
1451
1454
.10.1016/S0017-9310(00)00187-3
9.
Kim
,
S. Y.
,
Koo
,
J.
, and
Kuznetsov
,
A. V.
,
2001
, “
Effect of Anisotropy in Permeability and Effective Thermal Conductivity on Thermal Performance of an Aluminum Foam Heat Sink
,”
Numer. Heat Transfer, Part A
,
40
(
1
), pp.
21
36
.10.1080/104077801300348851
10.
Kuwahara
,
F.
,
Shirota
,
M.
, and
Nakayama
,
A.
,
2001
, “
A Numerical Study of Interfacial Convective Heat Transfer Coefficient in Two-Energy Equation Model for Convection in Porous Media
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
1153
1159
.10.1016/S0017-9310(00)00166-6
11.
Ghosh
,
I.
,
2008
, “
Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
130
(
3
), p.
034501
.10.1115/1.2804941
12.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Fluid Flow
,
44
(
4
), pp.
827
836
.10.1016/S0017-9310(00)00123-X
13.
Lord Kelvin
(Sir William Thomson),
1887
, “
On the Division of Space With Minimum Partitional Area
,”
Acta Math.-Djursholm
,
11
(
1–4
), pp.
121
134
.10.1007/BF02612322
14.
Phelan
,
R.
,
Weaire
,
D.
,
Verbist
,
G.
, and
Petres
,
E. A. J. F.
,
1996
, “
The Conductivity of a Foam
,”
J. Phys.: Condens. Matter
,
8
(
34
), pp.
475
482
.10.1088/0953-8984/8/34/002
15.
Haussener
,
S.
,
Coray
,
P.
,
Lipinski
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2010
, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
ASME J. Heat Transfer
,
132
(
2
), p.
023305
.10.1115/1.4000226
16.
Petrasch
,
J.
,
Meier
,
F.
,
Friess
,
H.
, and
Steinfeld
,
A.
,
2008
, “
Tomography Based Determination of Permeability, Dupuit–Forchheimer Coefficient, and Interfacial Heat Transfer Coefficient in Reticulate Porous Ceramics
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
315
326
.10.1016/j.ijheatfluidflow.2007.09.001
17.
Petrasch
,
J.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2008
, “
Tomography-based Determination of the Effective Thermal Conductivity of Fluid-Saturated Reticulate Porous Ceramics
,”
ASME J. Heat Transfer
,
130
(
3
), p.
032602
.10.1115/1.2804932
18.
Coquard
,
R.
,
Rousseau
,
B.
,
Echegut
,
P.
,
Baillis
,
D.
,
Gomart
,
H.
, and
Iacona
,
E.
,
2012
, “
Investigations of the Radiative Properties of Al–Nip Foams Using Tomographic Images and Stereoscopic Micrographs
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1606
1619
.10.1016/j.ijheatmasstransfer.2011.11.017
19.
Loretz
,
M.
,
Coquard
,
R.
,
Baillis
,
D.
, and
Maire
,
E.
,
2008
, “
Metallic Foams: Radiative Properties/Comparison Between Different Models
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
1
), pp.
16
27
.10.1016/j.jqsrt.2007.05.007
20.
Bear
,
J.
,
1972
,
Dynamics of Fluids in Porous Media
,
Elsevier
,
New York
.
21.
Du Plessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1994
, “
Pressure-Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
.10.1016/0009-2509(94)00170-7
22.
Fourie
,
J. G.
, and
Plessis
,
J. P. D.
,
2002
, “
Pressure Drop Modeling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
,
57
(
14
), pp.
2781
2789
.10.1016/S0009-2509(02)00166-5
23.
Izzo
,
J. R.
, Jr.
,
Joshi
,
A. S.
,
Peracchio
,
A. A.
,
Grew
,
K. N.
,
Chiu
,
W. K. S.
,
Tkachuk
,
A. T.
,
Wang
,
S. H.
, and
Yun
,
W.
,
2008
, “
Nondestructive Reconstruction and Analysis of Solid Ooxide Fuel Cell Anodes Using X-Ray Computed Tomography at Sub-50 Nm Resolution
,”
J. Electrochem. Soc.
,
155
(
5
), pp.
B504
B508
.10.1149/1.2895067
24.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man., Cybern.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
25.
Grew
,
K. N.
,
Peracchio
,
A. A.
,
Joshi
,
A. S.
,
Izzo
,
J. R.
, Jr.
, and
Chiu
,
W. K. S.
,
2010
, “
Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure. Part 1: Volumetric Measurements of the Heterogeneous Structure
,”
J. Power Sources
,
195
(
24
), pp.
7930
7942
.10.1016/j.jpowsour.2010.07.005
26.
Grew
,
K. N.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2010
, “
Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure: Part 2. Quantitative Measurement of the Microstructure and Contributions to Transport Losses
,”
J. Power Sources
,
195
(
24
), pp.
7943
7958
.10.1016/j.jpowsour.2010.07.006
27.
Laurencin
,
J.
,
Quey
,
R.
,
Delette
,
G.
,
Suhonen
,
H.
,
Cloetens
,
P.
, and
Bleuet
,
P.
,
2012
, “
Characterization of Solid Oxide Fuel Cell Ni–8YSZ Substrate by Synchrotron X-Ray Nano-Tomography: From 3D Reconstruction to Microstructure Quantification
,”
J. Power Sources
,
198
, pp.
182
189
.10.1016/j.jpowsour.2011.09.105
28.
Rajon
,
D.
,
Patton
,
P.
,
Shah
,
A.
,
Watchman
,
C.
, and
Bolch
,
W.
,
2002
, “
Surface Area Overestimation Within Three-Dimensional Digital Images and Its Consequence for Skeletal Dosimetry
,”
Med. Phys.
,
29
(
5
), pp.
682
693
.10.1118/1.1470207
29.
Howell
,
J.
,
Hall
,
M.
, and
Ellzey
,
J.
,
1999
, “
Combustion of Hydrocarbon Fuels Within Porous Inert Media
,”
Prog. Energy Combust.
,
22
(
2
), pp.
121
145
.10.1016/0360-1285(96)00001-9
30.
Vicente
,
J.
,
Topin
,
F.
, and
Daurelle
,
J. V.
,
2006
, “
Open Celled Material Structural Properties Measurement: From Morphology to Transport Properties
,”
Mater. Trans.
,
47
(
9
), pp.
2195
2202
.10.2320/matertrans.47.2195
31.
Zhang
,
D.
,
Zhang
,
R.
,
Chen
,
S.
, and
Soll
,
W. E.
,
2000
, “
Pore Scale Study of Flow in Porous Media: Scale Dependency, REV, and Statistical REV
,”
Geophys. Res. Lett.
,
27
(
8
), pp.
1195
1198
.10.1029/1999GL011101
32.
Brakke
,
K. A.
,
1992
, “
The Surface Evolver
,”
Exp Math
,
1
(
2
), pp.
141
165
.10.1080/10586458.1992.10504253
33.
Dukhan
,
N.
, and
Patel
,
P.
,
2008
, “
Equivalent Particle Diameter and Length Scale for Pressure Drop in Porous Metals
,”
Exp. Therm. Fluid Sci.
,
32
(
5
), pp.
1059
1067
.10.1016/j.expthermflusci.2007.12.001
34.
Dybbs
,
A.
, and
Edwards
,
R. V.
,
1984
,
A New Look at Porous Media Fluid Mechanics—Darcy Turbulent
,
J.
Bear
, and
Y.
Corapcioglu
, eds.,
Martinus Nijhoff
,
Dordrecht, The Netherlands
, Vol.
82
, pp.
199
256
.
35.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Sano
,
Y.
,
2007
, “
Concept of Equivalent Diameter for Heat and Fluid Flow in Porous Media
,”
AIChE J.
,
53
(
3
), pp.
732
736
.10.1002/aic.11092
36.
Wu
,
Z.
,
Caliot
,
C.
,
Bai
,
F.
,
Flamant
,
G.
,
Wang
,
Z.
,
Zhang
,
J.
, and
Tian
,
C.
,
2010
, “
Experimental and Numerical Study on Pressure Drop in Ceramic Foams for Volumetric Solar Receiver Applications
,”
Appl. Energy
,
87
(
2
), pp.
504
513
.10.1016/j.apenergy.2009.08.009
37.
Hall
,
M. J.
, and
Hiatt
,
P. J.
,
1996
, “
Measurements of Pore Scale Flows Within and Exiting Ceramic Foams
,”
Exp. Fluids
,
20
(
6
), pp.
433
440
.10.1007/BF00189382
38.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
39.
Tien
,
C. L.
, and
Vafai
,
K.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
.10.1016/0017-9310(81)90027-2
40.
Nield
,
D. A.
,
Kuznetsov
,
A. V.
, and
Xiong
,
M.
,
2002
, “
Effect of Local Thermal Non-equilibrium on Thermally Developing Forced Convection in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
45
(
25
), pp.
4949
4955
.10.1016/S0017-9310(02)00203-X
41.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Numerical Study of Convective Heat Transfer Between Air Flow and Ceramic Foams to Optimize Volumetric Solar Air Receiver Performances
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1527
1537
.10.1016/j.ijheatmasstransfer.2010.11.037
42.
Younis
,
L. B.
, and
Viskanta
,
R.
,
1993
, “
Experimental Determination of the Volumetric Heat Transfer Coefficient Between Stream of Air and Ceramic Foam
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1425
1434
.10.1016/S0017-9310(05)80053-5
43.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
,
2002
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.10.1115/1.1416690
44.
.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Fibrous Metal Foams
,” Ph.D. thesis, University of Colorado, Boulder, CO.
45.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
46.
Dukhan.
,
N.
,
2006
, “
Correlations for the Pressure Drop for Flow through Metal Foam
,”
Exp. Fluids
,
41
(
4
), pp.
665
672
.10.1007/s00348-006-0194-x
You do not currently have access to this content.