We report and model a linear increase in the thermal conductivity (κ) of polymer composites incorporated with relatively low length/diameter aspect ratio multiwalled carbon nanotubes (CNTs). There was no evidence of percolation-like behavior in the κ, at/close to the theoretically predicted threshold, which was attributed due to the interfacial resistance between the CNT and the polymer matrix. Concomitantly, the widely postulated high thermal conductivity of CNTs does not contribute to the net thermal conductivity of the composites. Through estimating the interfacial resistance and the thermal conductivity of the constituent CNTs, we conclude that our experimental and modeling approaches can be used to study thermal transport behavior in nanotube–polymer composites.

References

1.
Chung
,
D.
,
2001
, “
Comparison of Submicron-Diameter Carbon Filaments and Conventional Carbon Fibers as Fillers in Composite Materials
,”
Carbon
,
39
(
8
), pp.
1119
1125
.10.1016/S0008-6223(00)00314-6
2.
Pfeifer
,
S.
,
Park
,
S.-H.
, and
Bandaru
,
P. R.
,
2010
, “
Analysis of Electrical Percolation Thresholds in Carbon Nanotube Networks Using the Weibull Probability Distribution
,”
J. Appl. Phys.
,
108
(
2
),
15
, p. 024305.10.1063/1.3452361
3.
Yu
,
C.
,
Kim
,
Y. S.
,
Kim
,
D.
, and
Grunlan
,
J. C.
,
2008
, “
Thermoelectric Behavior of Segregated-Network Polymer Nanocomposites
,”
Nano Lett.
,
8
(
12
), pp.
4428
4432
.10.1021/nl802345s
4.
Park
,
S.-H.
,
Theilmann
,
P. T.
,
Asbeck
,
P. M.
, and
Bandaru
,
P. R.
,
2010
, “
Enhanced Electromagnetic Interference Shielding Through the Use of Functionalized Carbon-Nanotube-Reactive Polymer Composites
,”
IEEE Trans. Nanotechnol.
,
9
(
4
), pp.
464
469
.10.1109/TNANO.2009.2032656
5.
Bigg
,
D. M.
, and
Stutz
,
D. E.
,
1983
, “
Plastic Composites for Electromagnetic Interference Shielding Applications
,”
Polym. Compos.
,
4
(
1
), pp.
40
46
.10.1002/pc.750040107
6.
Rashid
,
E. S. A.
,
Ariffin
,
K.
,
Akil
,
H. M.
, and
Chee
,
C. K.
,
2008
, “
Mechanical and Thermal Properties of Polymer Composites for Electronic Packaging Application
,”
J. Reinf. Plast. Compos.
,
27
(
15
), pp.
1573
1584
.10.1177/0731684407086328
7.
Narayana
,
S.
, and
Sato
,
Y.
,
2012
, “
Heat Flux Manipulation With Engineered Thermal Materials
,”
Phys. Rev. Lett.
,
108
, p.
214303
.10.1103/PhysRevLett.108.214303
8.
Shenogina
,
N.
,
Shenogin
,
S.
,
Xue
,
L.
, and
Keblinski
,
P.
,
2005
, “
On the Lack of Thermal Percolation in Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
87
(
13
), p.
133106
.10.1063/1.2056591
9.
Landauer
,
R.
,
1978
, “
Electrical Conductivity in Inhomogeneous Media
,”
AIP Conf. Proc.
,
40
(
1
), pp.
2
45
.10.1063/1.31150
10.
Huxtable
,
S.
,
Cahill
,
D.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
,
2003
, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nature Mater.
,
2
(
11
), pp.
731
734
.10.1038/nmat996
11.
Biercuk
,
M.
,
Llaguno
,
M.
,
Radosavljevic
,
M.
,
Hyun
,
J.
,
Johnson
,
A.
, and
Fischer
,
J.
,
2002
, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
,
80
(
15
), pp.
2767
2769
.10.1063/1.1469696
12.
Bonnet
,
P.
,
Sireude
,
D.
,
Garnier
,
B.
, and
Chauvet
,
O.
,
2007
, “
Thermal Properties and Percolation in Carbon Nanotube-Polymer Composites
,”
Appl. Phys. Lett.
,
91(20)
, p.
201910
.10.1063/1.2813625
13.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: The 3 Omega Method
,”
Rev. Sci. Instrum.
,
61
(
2
), pp.
802
808
.10.1063/1.1141498
14.
Park
,
S.-H.
, and
Bandaru
,
P. R.
,
2010
, “
Improved Mechanical Properties of Carbon Nanotube/Polymer Composites Through the Use of Carboxyl-Epoxide Functional Group Linkages
,”
Polymer
,
51
(
22
), pp.
5071
5077
.10.1016/j.polymer.2010.08.063
15.
ASTM Standard E1225
,
2009
, “
Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique
,” ASTM International, West Conshohocken, PA, 2003, doi:10.1520/E1225-09, www.astm.org.
16.
ASTM Standard D5470
,
2012
, “
Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials
,” ASTM International, West Conshohocken, PA, 2003, doi:10.1520/D5470-12, www.astm.org.
17.
Tleoubaev
,
A.
,
Brzezinski
,
A.
, and
Braga
,
L. C.
,
2008
, “
Accurate Simultaneous Measurements of Thermal Conductivity and Specific Heat of Rubber, Elastomers, and Other Materials
,”
Proceedings of 12th Brazilian Rubber Technology Congress
,
Sao Paulo, Brazil
, April 22–24.
18.
Price
,
D. M.
, and
Jarratt
,
M.
,
2000
, “
Thermal Conductivity of PTFE and PTFE Composites
,” Proceedings of the Twenty-Eighth Conference of the North American Thermal Analysis Society, Orlando, FL.
19.
Bruggeman
,
D. A. G.
,
1935
, “
Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen
,”
Ann. Phys. (Leipz.)
,
24
, p.
636
.10.1002/andp.19354160705
20.
Balberg
,
I.
,
1985
, “
Universal Percolation-Threshold Limits in the Continuum
,”
Phys. Rev. B
,
31
, pp.
4053
4055
.10.1103/PhysRevB.31.4053
21.
Deng
,
F.
,
Zheng
,
Q.-S.
,
Wang
,
L.-F.
, and
Nan
,
C.-W.
,
2007
, “
Effects of Anisotropy, Aspect Ratio, and Nonstraightness of Carbon Nanotubes on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
90
(
2
), p.
021914
.10.1063/1.2430914
22.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
23.
Chen
,
T.
,
Weng
,
G.
, and
Liu
,
W.
,
2005
, “
Effect of Kapitza Contact and Consideration of Tube-End Transport on the Effective Conductivity in Nanotube-Based Composites
,”
J. Appl. Phys.
,
97
(10, Part
1
), p.
104312
.10.1063/1.1896094
24.
Nan
,
C.
,
1994
, “
Effective-Medium Theory of Piezoelectric Composites
,”
J. Appl. Phys.
,
76
(
2
), pp.
1155
1163
.10.1063/1.357839
25.
Nan
,
C.
,
Birringer
,
R.
,
Clarke
,
D.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.10.1063/1.365209
26.
Bryning
,
M. B.
,
Milkie
,
D. E.
,
Islam
,
M. F.
,
Kikkawa
,
J. M.
, and
Yodh
,
A. G.
,
2005
, “
Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
,
87
(
16
), p.
161909
.10.1063/1.2103398
27.
Zhong
,
H.
, and
Lukes
,
J. R.
,
2006
, “
Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling
,”
Phys. Rev. B
,
74
(
12
), p.
125403
.10.1103/PhysRevB.74.125403
28.
Nan
,
C.
,
Li
,
X.
, and
Birringer
,
R.
,
2000
, “
Inverse Problem for Composites With Imperfect Interface: Determination of Interfacial Thermal Resistance, Thermal Conductivity of Constituents, and Microstructural Parameters
,”
J. Am. Ceram. Soc.
,
83
(
4
), pp.
848
854
.10.1111/j.1151-2916.2000.tb01284.x
29.
Liang
,
Q.
,
Moon
,
K.-S.
,
Jiang
,
H.
, and
Wong
,
C. P.
,
2012
, “
Thermal Conductivity Enhancement of Epoxy Composites by Interfacial Covalent Bonding for Underfill and Thermal Interfacial Materials in Cu/Low-K Application
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
2
(
10
), pp.
1571
1579
.10.1109/TCPMT.2012.2204885
30.
Liang
,
Q.
,
Yao
,
X.
,
Wang
,
W.
,
Liu
,
Y.
, and
Wong
,
C. P.
,
2011
, “
A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials
,”
ACS Nano
,
5
(
3
), pp.
2392
2401
.10.1021/nn200181e
You do not currently have access to this content.