Two-dimensional steady-state laminar natural convection of inelastic power-law non-Newtonian fluids in square enclosures with differentially heated sidewalls subjected to constant wall heat flux (CHWF) are studied numerically. To complement the simulations, a scaling analysis is also performed to elucidate the anticipated effects of Rayleigh number (Ra), Prandtl number (Pr) and power-law index (n) on the Nusselt number. The effects of n in the range 0.6 ≤ n ≤ 1.8 on heat and momentum transport are investigated for nominal values Ra in the range 103–106 and a Pr range of 10–105. In addition the results are compared with the constant wall temperature (CWT) configuration. It is found that the mean Nusselt number Nu¯ increases with increasing values of Ra for both Newtonian and power-law fluids in both configurations. However, the Nu¯ values for the vertical walls subjected to CWHF are smaller than the corresponding values in the same configuration with CWT (for identical values of nominal Ra, Pr and n). The Nu¯ values obtained for power-law fluids with n<1 (n>1) are greater (smaller) than that obtained in the case of Newtonian fluids with the same nominal value of Ra due to strengthening (weakening) of convective transport. With increasing shear-thickening (i.e., n > 1) the mean Nusselt number Nu¯ settles to unity (Nu¯=1.0) as heat transfer takes place principally due to thermal conduction. The effects of Pr are shown to be essentially negligible in the range 10–105. New correlations are proposed for the mean Nusselt number Nu¯ for both Newtonian and power-law fluids.

References

1.
de Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Meth. Fluids
,
3
, pp.
249
264
.10.1002/fld.1650030305
2.
Emery
,
A. F.
, and
Lee
,
J. W.
,
1999
, “
The Effects of Property Variations on Natural Convection in a Square Enclosure
,”
ASME J. Heat Transfer
,
121
, pp.
57
62
.10.1115/1.2825966
3.
Aydin
,
O.
,
Ünal
,
A.
, and
Ayhan
,
T.
,
1999
, “
Natural Convection in Rectangular Enclosures Heated From One Side and Cooled From Above
,”
Int. J. Heat Mass Transf.
,
42
, pp.
2345
2355
.10.1016/S0017-9310(98)00319-6
4.
Ostrach
,
S.
,
1988
, “
Natural Convection in Enclosures
,”
ASME J. Heat Transfer
,
110
, pp.
1175
1190
.10.1115/1.3250619
5.
Bejan
,
A.
,
1984
,
Convection Heat Transfer
,
John Wiley Sons Inc.
,
New York
.
6.
Ozoe
,
H.
, and
Churchill
,
S. W.
,
1972
, “
Hydrodynamic Stability and Natural Convection in Ostwald–De Waele and Ellis Fluids: The Development of a Numerical Solution
,”
AIChE J.
,
18
, pp.
1196
1207
.10.1002/aic.690180617
7.
Lamsaadi
,
M.
,
Naïmi
,
M.
, and
Hasnaoui
,
M.
,
2005
, “
Natural Convection of Non-Newtonian Power Law Fluids in a Shallow Horizontal Rectangular Cavity Uniformly Heated From Below
,”
Heat Mass Transf.
,
41
, pp.
239
249
.10.1007/s00231-004-0530-8
8.
Ohta
,
M.
,
Ohta
,
M.
,
Akiyoshi
,
M.
, and
Obata
,
E.
,
2002
, “
A Numerical Study on Natural Convective Heat Transfer of Pseudoplastic Fluids in a Square Cavity
,”
Numer. Heat Transf. A
,
41
, pp.
357
372
.10.1080/104077802317261218
9.
Inaba
,
H.
,
Dai
,
C.
, and
Horibe
,
A.
,
2003
, “
Natural Convection Heat Transfer of Microemulsion Phase-Change-Material Slurry in Rectangular Cavities Heated From Below and Cooled From Above
,”
Int. J. Heat Mass Transf.
,
46
, pp.
4427
4438
.10.1016/S0017-9310(03)00289-8
10.
Zhang
,
J.
,
Vola
,
D.
, and
Frigaard
,
I. A.
,
2006
, “
Yield Stress Effects on Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
566
, pp.
389
419
.10.1017/S002211200600200X
11.
Balmforth
,
N. J.
, and
Rust
,
A. C.
,
2009
, “
Weakly Nonlinear Viscoplastic Convection
,”
J. Non-Newt. Fluid Mech.
,
158
, pp.
36
45
.10.1016/j.jnnfm.2008.07.012
12.
Vikhansky
,
A.
,
2009
, “
Thermal Convection of a Viscoplastic Liquid with High Rayleigh and Bingham Numbers
,”
Phys. Fluids
,
21
, p.
103103
.10.1063/1.3256166
13.
Park
,
H. M.
, and
Ryu
,
D. H.
,
2001
, “
Rayleigh–Bénard Convection of Viscoelastic Fluids in Finite Domains
,”
J. Non-Newt. Fluid Mech.
,
98
, pp.
169
184
.10.1016/S0377-0257(01)00104-5
14.
Kim
,
G. B.
,
Hyun
,
J. M.
, and
Kwak
,
H. S.
,
2003
, “
Transient Buoyant Convection of a Power Law Non-Newtonian Fluid in an Enclosure
,”
Int. J. Heat Mass Transf.
,
46
, pp.
3605
3617
.10.1016/S0017-9310(03)00149-2
15.
Lamsaadi
,
M.
,
Naïmi
,
M.
,
Hasnaoui
,
M.
, and
Mamou
,
M.
,
2006
, “
Natural Convection in a Vertical Rectangular Cavity Filled With a Non-Newtonian Power Law Fluid and Subjected to a Horizontal Temperature Gradient
,”
Num. Heat Transf.
Part A,
49
, pp.
969
990
.10.1080/10407780500324988
16.
Lamsaadi
,
M.
,
Naïmi
,
M.
, and
Hasnaoui
,
M.
,
2006
, “
Natural Convection Heat Transfer in Shallow Horizontal Rectangular Enclosures Uniformly Heated From the Side and Filled With Non-Newtonian Power Law Fluids
,”
Energ. Convers. Manage.
,
47
, pp.
2535
2551
.10.1016/j.enconman.2005.10.028
17.
Barth
,
W. L.
, and
Carey
,
G. F.
,
2006
, “
On a Natural-Convection Benchmark Problem in Non-Newtonian Fluids
,”
Num. Heat Transf.
Part B,
50
, pp.
193
216
.10.1080/10407790500509009
18.
Leung
,
W. H.
,
Hollands
,
K. G. T.
, and
Brunger
,
A. P.
,
1998
, “
On a Physically Realizable Benchmark Problem in Internal Natural Convection
,”
Int. J. Heat Mass Transf.
,
41
, pp.
3817
3828
.10.1016/S0017-9310(98)00095-7
19.
Vola
,
D.
,
Boscardin
,
L.
, and
Latché
,
J. C.
,
2003
, “
Laminar Unsteady Flows of Bingham Fluids: A Numerical Strategy and Some Benchmark Results
,”
J. Comput. Phys.
,
187
, pp.
441
456
.10.1016/S0021-9991(03)00118-9
20.
Turan
,
O.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2010
, “
Laminar Natural Convection of Bingham Fluids in a Square Enclosure With Differentially Heated Side Walls
,”
J. Non-Newt. Fluid Mech.
,
165
, pp.
903
913
.10.1016/j.jnnfm.2010.04.013
21.
Turan
,
O.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2011
, “
Aspect Ratio Effects in Laminar Natural Convection of Bingham Fluids in Rectangular Enclosures With Differentially Heated Side Walls
,”
J. Non-Newt. Fluid Mech.
,
166
, pp.
208
230
.10.1016/j.jnnfm.2010.12.002
22.
Turan
,
O.
,
Sachdeva
,
A.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2011
, “
Laminar Natural Convection of Bingham Fluids in a Square Enclosure With Vertical Walls Subjected to Constant Heat Flux
,”
Numer. Heat Transf. A
,
60
(
5
), pp.
381
409
.10.1080/10407782.2011.594417
23.
Turan
,
O.
,
Sachdeva
,
A.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2011
, “
Laminar Natural Convection of Power-Law Fluids in a Square Enclosure With Differentially Heated Side Walls Subjected to Constant Temperatures
,”
J. Non-Newt. Fluid Mech.
,
166
, pp.
1049
1063
.10.1016/j.jnnfm.2011.06.003
24.
Ng
,
M. L.
, and
Hartnett
,
J. P.
,
1986
, “
Natural Convection in Power Law Fluids
,”
Int. Comm. Heat Mass Transf.
,
13
, pp.
115
120
.10.1016/0735-1933(86)90078-3
25.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, D.C
.
You do not currently have access to this content.