The full-spectrum k-distribution (FSK) approach has become a promising method for radiative heat transfer calculations in strongly nongray participating media, due to its ability to achieve high accuracy at a tiny fraction of the line-by-line (LBL) computational cost. However, inhomogeneities in temperature, total pressure, and component mole fractions severely challenge the accuracy of the FSK approach. The objective of this paper is to develop a narrow band-based hybrid FSK model that is accurate for radiation calculations in combustion systems containing both molecular gases and nongray particles such as soot with strong temperature and mole fraction inhomogeneities. This method combines the advantages of the multigroup FSK method for temperature inhomogeneities in a single species, and the modified multiscale FSK method for concentration inhomogeneities in gas-soot mixtures. In this new method, each species is considered as one scale; the absorption coefficients within each narrow band of every gas scale are divided into M exclusive spectral groups, depending on their temperature dependence. Accurate and compact narrow band multigroup databases are constructed for combustion gases such as CO2 and H2O. Sample calculations are performed for a 1D medium and also for a 2D axisymmetric combustion flame. The narrow band-based hybrid method is observed to accurately predict heat transfer from extremely inhomogeneous gas-soot mixtures with/without wall emission, yielding close-to-LBL accuracy.

1.
Denison
,
M. K.
, and
Webb
,
B. W.
, 1993, “
A Spectral Line Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
1004
1012
.
2.
Pierrot
,
L.
,
Rivière
,
Ph.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1999, “
A Fictitious-Gas-Based Absorption Distribution Function Global Model for Radiative Transfer in Hot Gases
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
62
, pp.
609
624
.
3.
Modest
,
M. F.
, and
Zhang
,
H.
, 2002, “
The Full-Spectrum Correlated-k Distribution for Thermal Radiation From Molecular Gas-Particulate Mixtures
,”
ASME J. Heat Transfer
0022-1481,
124
(
1
), pp.
30
38
.
4.
Modest
,
M. F.
, and
Riazzi
,
R. J.
, 2005, “
Assembly of Full-Spectrum k-Distributions From a Narrow-Band Database; Effects of Mixing Gases, Gases and Nongray Absorbing Particles, and Mixtures With Nongray Scatterers in Nongray Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
90
(
2
), pp.
169
189
.
5.
Zhang
,
H.
, and
Modest
,
M. F.
, 2002, “
A Multi-Scale Full-Spectrum Correlated-k Distribution for Radiative Heat Transfer in Inhomogeneous Gas Mixtures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
(
2–5
), pp.
349
360
.
6.
Zhang
,
H.
, and
Modest
,
M. F.
, 2003, “
Scalable Multi-Group Full-Spectrum Correlated-k Distributions for Radiative Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
125
(
3
), pp.
454
461
.
7.
Wang
,
L.
, and
Modest
,
M. F.
, 2005, “
Narrow-Band Based Multi-Scale Full-Spectrum k-Distribution Method for Radiative Transfer in Inhomogeneous Gas Mixtures
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
740
748
.
8.
Pal
,
G.
,
Modest
,
M. F.
, and
Wang
,
L.
, 2008, “
Hybrid Full-Spectrum Correlated k-Distribution Method for Radiative Transfer in Strongly Nonhomogeneous Gas Mixtures
,”
ASME J. Heat Transfer
0022-1481,
130
, pp.
082701
082708
.
9.
Pal
,
G.
and
Modest
,
M. F.
, 2009, “
A Multi-Scale Full-Spectrum k-Distribution Method for Radiative Transfer in Nonhomogeneous Gas-Soot Mixture With Wall Emission
,”
Comp. Therm. Sci.
,
1
(
2
), pp.
137
158
.
10.
Wang
,
L.
,
Haworth
,
D. C.
,
Turns
,
S. R.
, and
Modest
,
M. F.
, 2005, “
Interactions Among Soot, Thermal Radiation, and NOx Emissions in Oxygen-Enriched Turbulent Nonpremixed Flames: A CFD Modeling Study
,”
Combust. Flame
0010-2180,
141
(
1–2
), pp.
170
179
.
11.
Solovjov
,
V.
, and
Webb
,
B. W.
, 2001, “
An Efficient Method of Modeling Radiative Transfer in Multicomponent Gas Mixtures With Soot
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
450
457
.
12.
Wang
,
L.
,
Modest
,
M. F.
,
Haworth
,
D. C.
, and
Turns
,
S. R.
, 2005, “
Modeling Nongray Soot and Gas-Phase Radiation in Luminous Turbulent Nonpremixed Jet Flames
,”
Combust. Theory Modell.
1364-7830,
9
(
3
), pp.
479
498
.
13.
Wang
,
A.
, and
Modest
,
M. F.
, 2005, “
High-Accuracy, Compact Database of Narrow-Band k-Distributions for Water Vapor and Carbon Dioxide
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
, pp.
245
261
.
14.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
.
15.
Modest
,
M. F.
, 2003, “
Narrow-Band and Full-Spectrum k-Distributions for Radiative Heat Transfer—Correlated-k vs. Scaling Approximation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
76
(
1
), pp.
69
83
.
16.
Chang
,
H.
, and
Charalampopoulos
,
T. T.
, 1990, “
Determination of the Wavelength Dependence of Refractive Indices of Flame Soot
,”
Proc. R. Soc. London
0370-1662,
430
(
1880
), pp.
577
591
.
17.
Mehta
,
R. S.
, 2008, “
Detailed Modelling of Soot Formation and Turbulence-Radiation Interactions in Turbulent Jet Flames
,” Ph.D. thesis, Pennsylvania State University, University Park, PA.
18.
Kent
,
J. H.
, and
Honnery
,
D.
, 1987, “
Modeling Sooting Turbulent Jet Flames Using an Extended Flamelet Technique
,”
Combust. Sci. Technol.
0010-2202,
54
, pp.
383
397
.
19.
Rothman
,
L. S.
,
Jacquemart
,
D.
,
Barbe
,
A.
,
Chris Benner
,
D.
,
Birk
,
M.
,
Brown
,
L. R.
,
Carleer
,
M. R.
,
Chackerian
,
C.
, Jr.
,
Chance
,
K.
,
Coudert
,
L. H.
,
Dana
,
V.
,
Devi
,
V. M.
,
Flaud
,
J. -M.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Hartmann
,
J. -M.
,
Jucks
,
K. W.
,
Maki
,
A. G.
,
Mandin
,
J. -Y.
,
Massie
,
S. T.
,
Orphal
,
J.
,
Perrin
,
A.
,
Rinsland
,
C. P.
,
Smith
,
M. A. H.
,
Tennyson
,
J.
,
Tolchenov
,
R. N.
,
Toth
,
R. A.
,
Vander Auwera
,
J.
,
Varanasi
,
P.
, and
Wagner
,
G.
, 2005, “
The HITRAN 2004 molecular spectroscopic database
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
96
, pp.
139
204
.
20.
Rothman
,
L. S.
,
Wattson
,
R. B.
,
Gamache
,
R.
,
Schroeder
,
J. W.
, and
McCann
,
A.
, and 1995, “
HITRAN, HAWKS and HITEMP: High-Temperature Molecular Database
,”
Proc. SPIE
0277-786X,
2471
, pp.
105
111
.
You do not currently have access to this content.