The problem of predicting deposition rates and film thickness variation is relevant to many high-vacuum physical vapor deposition (PVD) processes. Analytical methods for modeling the molecular flow fail when the geometry is more complicated than simple tubular or planar sources. Monte Carlo methods, which have traditionally been used for modeling PVD processes in more complicated geometries, being probabilistic in nature, entail long computation times, and thus render geometry optimization for deposition uniformity a difficult task. Free molecular flow is governed by the same line-of-sight considerations as thermal radiation. Though the existence of an analogy between the two was recognized by Knudsen (1909, Ann. Phys., 4(28), pp. 75–130) during his early experiments, it has not been exploited toward mainstream analysis of deposition processes. With the availability of commercial finite element software having advanced geometry modelers and built-in cavity radiation solvers, the analysis of diffuse thermal radiation problems has become considerably simplified. Hence, it is proposed to use the geometry modeling and radiation analysis capabilities of commercial finite element software toward analyzing and optimizing high-vacuum deposition processes by applying the radiation-molecular flow analogy. In this paper, we lay down this analogy and use the commercial finite element software ABAQUS for predicting radiation flux profiles from planar as well as tube sources. These profiles are compared to corresponding deposition profiles presented in thin-film literature. In order to test the ability of the analogy in predicting absolute values of molecular flow rates, ABAQUS was also employed for calculating the radiative flux through a long tube. The predictions are compared to Knudsen’s analytical formula for free molecular flow through long tubes. Finally, in order to see the efficacy of using the analogy in modeling the film thickness variation in a complex source-substrate configuration, an experiment was conducted where chromium films were deposited on an asymmetric arrangement of glass slides in a high-vacuum PVD chamber. The thickness of the deposited films was measured and the source-substrate configuration was simulated in ABAQUS. The variation of radiation fluxes from the simulation was compared to variation of the measured film thicknesses across the slides. The close agreement between the predictions and experimental data establishes the feasibility of using commercial finite element software for analyzing high vacuum deposition processes.

1.
Knudsen
,
M.
, 1909, “
Die Gesetze der Molekularströmung und der Inneren Reibungsströmung der Gase Durch Röhren
,”
Ann. Phys.
0003-3804,
4
(
28
), pp.
75
130
.
2.
von Smoluchowski
,
M.
, 1910, “
Zur Kinetischen Theorie der Transpiration und Diffusion Verdunnter Gase
,”
Ann. Phys.
0003-3804,
33
, pp.
1559
1570
.
3.
Clausing
,
P.
, 1932, “
Uber die Strömung Sehr Verdunnter Gase Durch Röhren von Beliebiger Lange
,”
Ann. Phys.
0003-3804,
5
(
12
), pp.
961
989
.
4.
Wood
,
R. W.
, 1915,
Philos. Mag.
0031-8086,
30
, pp.
300
304
.
5.
Wood
,
R. W.
, 1916,
Philos. Mag.
0031-8086,
32
, pp.
364
371
.
6.
Knudsen
,
M.
, 1916,
Ann. Phys.
0003-3804,
48
, pp.
1113
1121
.
7.
Shiralagi
,
K. T.
,
Kriman
,
A. M.
, and
Maracas
,
G. N.
, 1991, “
Effusion Cell Orientation Dependence of Molecular Beam Epitaxy Flux Uniformity
,”
J. Vac. Sci. Technol. A
0734-2101,
9
(
1
), pp.
65
70
.
8.
Curless
,
J. A.
, 1985, “
Molecular Beam Epitaxy Beam Flux Modeling
,”
J. Vac. Sci. Technol. B
0734-211X,
3
(
2
), pp.
531
534
.
9.
Swann
,
S.
,
Collett
,
S. A.
, and
Scarlett
,
I. R.
, 1990, “
Film Thickness Distribution Control With Off-Axis Circular Magnetron Sources Onto Rotating Substrate Holders: Comparison of Computer Simulation With Practical Results
,”
J. Vac. Sci. Technol. A
0734-2101,
8
(
3
), pp.
1299
1303
.
10.
Fatima Vales Silva
,
M.
, and
Nicholls
,
J. R.
, 2001, “
A Model for Calculating the Thickness Profile of TiB2 and Al Multilayer Coatings Produced by Planar Magnetron Sputtering
,”
Surf. Coat. Technol.
0257-8972,
142–144
, pp.
934
938
.
11.
Cale
,
T. S.
, and
Raupp
,
G. B.
, 1990, “
Free Molecular Transport and Deposition in Cylindrical Features
,”
J. Vac. Sci. Technol. B
0734-211X,
8
(
4
), pp.
649
655
.
12.
Cale
,
T. S.
, and
Raupp
,
G. B.
, 1990, “
A Unified Line-of-Sight Model of Deposition in Rectangular Trenches
,”
J. Vac. Sci. Technol. B
0734-211X,
8
(
6
), pp.
1242
1248
.
13.
O’Sullivan
,
P. L.
,
Baumann
,
F. H.
, and
Gilmer
,
G. H.
, 2000, “
Simulation of Physical Vapor Deposition into Trenches and Vias: Validation and Comparison With Experiment
,”
J. Appl. Phys.
0021-8979,
88
(
7
), pp.
4061
4068
.
14.
Davis
,
D. H.
, 1960, “
Monte Carlo Calculation of Molecular Flow Rates Through a Cylindrical Elbow and Pipes of Other Shape
,”
J. Appl. Phys.
0021-8979,
31
(
7
), pp.
1169
1176
.
15.
Adamson
,
S.
,
O’Carroll
,
C.
, and
McGilp
,
J. F.
, 1988, “
The Spatial Distribution of Flux Produced by Single Capillary Gas Dosers
,”
Vacuum
0042-207X,
38
(
4–5
), pp.
341
344
.
16.
Adamson
,
S.
,
O’Carroll
,
C.
, and
McGilp
,
J. F.
, 1988, “
The Angular Distribution of Thermal Molecular Beams Formed by Single Capillaries in the Molecular Flow Regime
,”
Vacuum
0042-207X,
38
(
6
), pp.
463
467
.
17.
Adamson
,
S.
,
O’Carroll
,
C.
, and
McGilp
,
J. F.
, 1989, “
Monte Carlo Calculations of the Beam Flux Distribution from Molecular Beam Epitaxy Sources
,”
J. Vac. Sci. Technol. B
0734-211X,
7
(
3
), pp.
487
490
.
18.
Lin
,
Z.
, and
Cale
,
T. S.
, 1995, “
Simulation of Collimated Flux Distributions During Physical Vapor Deposition
,”
Thin Solid Films
0040-6090,
270
, pp.
627
631
.
19.
Wickersham
,
C. E.
, 1987, “
Crystallographic Target Effects in Magnetron Sputtering
,”
J. Vac. Sci. Technol. A
0734-2101,
5
(
4
), pp.
1755
1758
.
20.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford University Press
,
London
.
21.
Fancey
,
K. S.
, 1995, “
A Coating Thickness Uniformity Model for Physical Vapour Deposition Systems: Overview
,”
Surf. Coat. Technol.
0257-8972,
71
, pp.
16
29
.
22.
Wasilewski
,
Z. R.
,
Aers
,
G. C.
,
SpringThorpe
,
A. J.
, and
Miner
,
C. J.
, 1991, “
Studies and Modeling of Growth Uniformity in Molecular Beam Epitaxy
,”
J. Vac. Sci. Technol. B
0734-211X,
9
(
1
), pp.
120
131
.
23.
Zehe
,
A.
, and
Ramirez
,
A.
, 2000, “
Homogeneity Optimized Layer Deposition on Large Substrates in the Molecular Beam Regime of Knudsen-Type Effusion Sources
,”
Revista Superficies y Vacio
1665-3521,
11
, pp.
44
46
.
24.
Bosch
,
S.
, 1992, “
Computer-Aided Procedure for Optimization of Layer Thickness Uniformity in Thermal Evaporation Physical Vapor Deposition Chambers for Lens Coating
,”
J. Vac. Sci. Technol. A
0734-2101,
10
(
1
), pp.
98
104
.
25.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
, 3rd ed.,
Wiley
,
New York
.
26.
Maissel
,
L.
, and
Glang
,
R.
, 1970,
Handbook of Thin Film Technology
,
McGraw-Hill
,
New York
.
27.
Grimley
,
R. T.
,
Wagner
,
L. C.
, and
Castle
,
P. M.
, 1975, “
Angular Distributions of Molecular Species Effusing From Near-Ideal Orifices
,”
J. Phys. Chem.
0022-3654,
79
(
4
), pp.
302
308
.
28.
Stickney
,
R. E.
,
Keating
,
R. F.
,
Yamamoto
,
S.
, and
Hastings
,
W. J.
, 1967, “
Angular Distribution of Flow From Orifices and Tubes at High Knudsen Numbers
,”
J. Vac. Sci. Technol.
0022-5355,
4
(
1
), pp.
10
18
.
29.
Knudsen
,
M.
, 1950,
Kinetic Theory of Gases: Some Modern Aspects
, 3rd ed.,
Wiley
,
New York
.
30.
Ohring
,
M.
, 1992,
The Materials Science of Thin Films
,
Academic Press
,
New York
.
31.
Giordmaine
,
J. A.
, and
Wang
,
T. C.
, 1960, “
Molecular Beam Formation by Long Parallel Tubes
,”
J. Appl. Phys.
0021-8979,
31
, pp.
463
471
.
32.
Wahlbeck
,
P. G.
, and
Phipps
,
T. E.
, 1968, “
Effusion. II. Angular Number Distributions of Gaseous CsCl from Right-Circular Cylindrical Orifices into Vacuum
,”
J. Chem. Phys.
0021-9606,
49
(
4
), pp.
1603
1608
.
33.
Adams
,
J. Q.
,
Phipps
,
T. E.
, and
Wahlbeck
,
P. G.
, 1968, “
Effusion III. Angular Number Distributions of Gaseous CsCl From Right-Circular Cylindrical Orifices into Vacuum
,”
J. Chem. Phys.
0021-9606,
49
(
4
), pp.
1609
1616
.
34.
Rugamas
,
F.
,
Roundy
,
D.
,
Mikaelian
,
G.
,
Vitug
,
G.
,
Rudner
,
M.
,
Shih
,
J.
,
Smith
,
D.
,
Segura
,
J.
, and
Khakoo
,
M. A.
, 2000, “
Angular Profiles of Molecular Beams from Effusive Tube Sources: I. Experiment
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
1750
1765
.
35.
Shen
,
L. Y. L.
, 1978, “
Angular Distribution of Molecular Beams from Modified Knudsen Cells for Molecular-Beam Epitaxy
,”
J. Vac. Sci. Technol.
0022-5355,
15
(
1
), pp.
10
12
.
36.
Buckman
,
S. J.
,
Gulley
,
R. J.
,
Moghbelalhossein
,
M.
, and
Bennett
,
S. J.
, 1993, “
Spatial Profiles of Effusive Molecular Beams and Their Dependence on Gas Species
,”
Meas. Sci. Technol.
0957-0233,
4
, pp.
1143
1153
.
37.
Wang
,
K. C.
, and
Wahlbeck
,
P. G.
, 1967, “
Effusion. I. Angular Number Distributions of Gaseous CsCl from a Near-Ideal Orifice into Vacuum
,”
J. Chem. Phys.
0021-9606,
47
(
11
), pp.
4799
4809
.
38.
Krasuski
,
P. T.
, 1987, “
Angular Distribution of Flux at the Exit of Cylindrical Tubes
,”
J. Vac. Sci. Technol. A
0734-2101,
5
(
4
), pp.
2488
2492
.
You do not currently have access to this content.