This is a numerical and experimental study on the combined parameter and function estimation. The determination of thermal conductivity and the surface heat flux is an illustration of combined estimation of one parameter and one function by means of the conjugate gradient method with vectorial descent parameter. The experimental example developed herein uses one set of good data obtained by Beck and Arnold (1977, Parameter Estimation in Engineering and Science, Wiley, New York). For this case, two measured temperatures in the solid are used to illustrate combined estimation. The unknown boundary condition and thermal conductivity of this solid were satisfactorily reconstructed and a good enough comparison is demonstrated between the known and estimated unknowns. The temperature data of Beck and Arnold are found to be excellent. Also, it is shown that the developed approach is general, stable, powerful, and able to process a wide variety of heat transfer problems where a simultaneous estimation is unavoidable.

1.
Alifanov
,
O. M.
, 1994,
Inverse Heat Transfer Problems
,
Springer-Verlag
,
Berlin
.
2.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
, 2000,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor & Francis
,
Philadelphia, PA
.
3.
Beck
,
J. V.
, and
Arnold
,
K. J.
, 1977,
Parameter Estimation in Engineering and Science
,
Wiley
,
New York
.
4.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St-Clair
,
C. R.
, 1985,
Inverse Heat Conduction. Ill Posed Problems
,
Wiley
,
New York
.
5.
Murio
,
D. A.
, 1993,
The Mollification Method and the Numerical Solution of the Ill-Posed Problems
,
Wiley Interscience
,
New York
.
6.
Hensel
,
E.
, 1991,
Inverse Theory and Applications for Engineers
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
7.
Beck
,
J. V.
, 1988, “
Combined Parameter and Function Estimation in Heat Transfer With Application to Contact Conductance
,”
J. Heat Transfer
0022-1481,
110
, pp.
1046
1058
.
8.
Martin
,
T. J.
, and
Dulikravicz
,
G. S.
, 2000, “
Inverse Determination of Temperature-Dependent Thermal Conductivity Using Steady Surface Data on Arbitrary Objects
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
450
459
.
9.
Dowding
,
K. J.
,
Beck
,
J. V.
,
Ulbrich
,
A.
,
Blackwell
,
B.
, and
Hayes
,
J.
, 1995, “
Estimation of Thermal Properties and Surface Heat Flux in Carbon-Carbon Composite
,”
J. Thermophys. Heat Transfer
0887-8722,
9
(
2
), pp.
345
351
.
10.
Alifanov
,
O. M.
,
Artyukhin
,
E. A.
, and
Rumyantsev
,
S. V.
, 1995,
Extreme Methods of Solving Ill-Posed Problems and Their Applications to Inverse Heat Transfer Problems
,
Begell House
,
New York
.
11.
Morozov
,
V. A.
, 1984,
Methods for Solving Incorrectly Posed Problems
,
Springer-Verlag
,
Berlin
.
12.
Loulou
,
T.
, and
Artioukhine
,
E. A.
, 2003, “
Optimal Choice of Descent Steps in Gradient Type Methods When Applied to Combined Parameter and∕or Function Estimation
,”
Inverse Probl. Eng.
1068-2767,
11
(
4
), pp.
273
288
.
13.
IMSL, Library edition 10.0, User’s Manual, Houston, TX, 1987.
14.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Haji-Sheikh
,
A.
, 1996, “
Comparison of Some Inverse Heat Conduction Methods Using Experimental Data
,”
Int. J. Heat Mass Transfer
0017-9310,
139
(
17
), pp.
3649
3657
.
15.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
, 1977,
Solution of Ill-Posed Problems
,
Winston
,
Washington DC
.
16.
de Boor
,
C.
, 1981,
A Practical Guide to Splines
,
Springer-Verlag
,
Berlin
.
17.
Moffat
,
R. J.
, 1982, “
Contribution to the Theory of Single-Sample Uncertainty Analysis
,”
J. Fluids Eng.
0098-2202,
104
, pp.
250
260
.
18.
Moffat
,
R. J.
, 1985, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
J. Fluids Eng.
0098-2202,
107
, pp.
173
178
.
You do not currently have access to this content.