An experimental investigation of the rapid formation and collapse of bubbles formed on a micro heater (25×80 μm2) is presented. Short electric pulses in the range of 1 μs to 4 μs are applied to the resistive heater, which is immersed in deionized water and generates a heat flux of more than 750 MW/m2. A stroboscopic technique with a time resolution of 30 ns and spatial resolution of 2 μm was used to capture the dynamics of the bubble growth and collapse. From the nucleation theory, the nucleation temperatures are close to the kinetic limit of superheat and weakly depends on the heating rate. The velocity, acceleration, and the pressure profiles after the vapor sheet formation are presented.

1.
Shusser
,
M.
, and
Weihs
,
D.
,
1999
, “
Explosive Boiling of a Liquid Droplet
,”
Int. J. Multiphase Flow
,
25
, pp.
1561
1573
.
2.
Avedisian, C. T., 1986, “Bubble Growth in Superheated Liquid Droplets,” in Encyclopedia of Fluid Mechanics, 3, Gulf Publishing Co., Houston, TX, pp. 130–190; chpt. 8.
3.
Rembe
,
C.
,
Wiesche
,
S.
, and
Hofer
,
E. P.
,
2000
, “
Thermal Ink Jet Dynamics: Modeling, Simulation, and Testing
,”
Microelectron. Reliab.
,
40
, pp.
525
532
.
4.
Blander
,
M.
, and
Katz
,
J. L.
,
1975
, “
Bubble Nucleation in Liquids
,”
AIChE J.
,
21
(
5
), pp.
833
848
.
5.
Allen
,
R. R.
,
Meyer
,
J. D.
, and
Knight
,
W. R.
,
1985
, “
Thermodynamics and Hydrodynamics of Thermal Ink Jets
,”
Hewlett-Packard J.
,
36
, pp.
21
27
.
6.
Asai
,
A.
,
1989
, “
Application of the Nucleation Theory to the Design of Bubble Jet Printers
,”
Jpn. J. Appl. Phys., Part 1
28
(
5
), pp.
909
915
.
7.
Andrews, J. R., and O’Horo, M. P., 1995, “Initial Stages of Vapor Bubble Nucleation in Thermal Inkjet Processes,” Proceedings of SPIE—The Internation Society for Optical Engineering, 2413, pp. 182–188.
8.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on the Heating Surface
,”
ASME J. Heat Transfer
,
84
, pp.
207
216
.
9.
Asai
,
A.
,
Hara
,
T.
, and
Endo
,
I.
,
1987
, “
One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers
,”
Jpn. J. Appl. Phys., Part 1
,
26
(
10
), pp.
1794
1801
.
10.
Asai
,
A.
,
1991
, “
Bubble Dynamics in Boiling Under High Heat Flux Pulse Heating
,”
ASME J. Heat Transfer
,
113
, pp.
973
979
.
11.
Runge, W., 1992, “Nucleation in Thermal Ink-Jet Printers,” IS&T’s Eighth International Congress on Advances in Non-Impacting Technologies, pp. 299–302.
12.
Avedisian
,
C. T.
,
Osbourne
,
W. S.
,
McLeod
,
F. D.
, and
Curley
,
C. M.
,
1999
, “
Measuring Bubble Nucleation Temperature on the Surface of a Rapidly Heated Thermal Inkjet Heater Immersed in a Pool of Water
,”
Proc. R. Soc. London, Ser. A
,
455
, pp.
3875
3899
.
13.
Chen
,
P.
,
Chen
,
W.
, and
Chang
,
S. H.
,
1997
, “
Bubble Growth and Ink Ejection Process of a Thermal Ink Jet Print Head
,”
Int. J. Mech. Sci.
,
39
(
6
), pp.
683
695
.
14.
Lin
,
L.
,
Pisano
,
A. P.
, and
Carey
,
V. P.
,
1998
, “
Thermal Bubble Formation on Polysilicon Micro Resistor
,”
ASME J. Heat Transfer
,
120
, pp.
735
742
.
15.
Zhao
,
Z.
,
Gold
,
S.
, and
Poulikakos
,
D.
,
2000
, “
Pressure and Power Generation During Explosive Vaporization on a Thin Film Microheater
,”
Int. J. Heat Mass Transfer
,
43
, pp.
281
296
.
16.
Torpey, P. A., 1988, “Prevention of Air Ingestion in a Thermal Ink-Jet Device,” Proceedings of the 4th International Congress on Advances in Non-Impact Print Technologies, March, pp. 70–78.
17.
Andrews, J. R., and O’Horo, M. P., 1995, “High Speed Stroboscopic System for Visualization of Thermal Inkjet Processes,” Proceedings of SPIE—The Internation Society for Optical Engineering, 2413, pp. 176–181.
18.
Hammitt, F. G., 1980, Cavitation and Multiphase Flow Phenomena, McGraw-Hill, New York.
19.
Brennen, C., 1995, Cavitation and Bubble Dynamics, Oxford University Press, New York.
20.
Carey, V. P., 1992, Liquid-Vapor Phase-Change Phenomena, Hemisphere, Washington, DC.
21.
Avedisian
,
C. T.
,
1985
, “
The Homogeneous Nucleation Limits of Liquids
,”
J. Phys. Chem. Ref. Data
,
14
, pp.
695
720
.
You do not currently have access to this content.