The effects of surfactant concentration on the initial short-time-scale Marangoni convection around boiling nuclei in aqueous solutions have been computationally investigated. The model consists of a hemispherical bubble (1–100 μm radius) on a downward-facing constant-temperature heated wall in a fluid pool with an initial uniform temperature gradient. Time-dependent transport of liquid mass, momentum, energy, and surfactant bulk and surface convection along with the adsorption kinetics are considered. Conditions for bubble sizes, surfactant bulk concentrations, and wall heat flux levels are represented by a range of thermocapillary and diffusocapillary Marangoni numbers (6MaT103,0MaS8.6×105) over a micro-scale time period (1 μs–1 ms). With a surfactant in solution, a surface concentration gradient develops at the bubble interface that tends to oppose the temperature gradient and reduce the overall Marangoni convection. The maximum circulation strength, which is dependent on the bubble size, corresponds to a characteristic surfactant adsorption time. This, when scaled by a ratio of bubble radius, is found to depend solely on the surfactant bulk concentration. Moreover, the interfacial surfactant adsorption does not display a stagnant cap behavior for the range of parameters and time scales covered in this study.

1.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
1999
, “
A Review of Enhanced Heat Transfer in Nucleate Pool Boiling of Aqueous Surfactant and Polymeric Solutions
,”
J. Enhanced Heat Transfer
,
6
(
2–4
), pp.
135
150
.
2.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
2000
, “
Pool Boiling Heat Transfer in Aqueous Solutions of an Anionic Surfactant
,”
ASME J. Heat Transfer
,
122
(
4
), pp.
708
715
.
3.
Hetsroni
,
G.
,
Zakin
,
J. L.
,
Lin
,
Z.
,
Mosyak
,
A.
,
Pancallo
,
E. A.
, and
Rozenblit
,
R.
,
2000
, “
The Effect of Surfactants on Bubble Growth, Wall Thermal Patterns and Heat Transfer in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
44
, pp.
485
497
.
4.
Zhang, J., and Manglik, R. M., 2003, “Pool Boiling Heat Transfer in Aqueous Solutions of a Cationic Surfactant,” Paper No. TED-AJ03-248, Proceedings of 6th AMSE-JSME Thermal Engineering Joint Conference, ASME, New York.
5.
Myers, D., 1999, Surfaces, Interfaces, and Colloids, 2nd Edition, Wiley-VCH, New York, NY.
6.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
2002
, “
The Influence of Additive Molecular Weight and Ionic Nature on the Pool Boiling Performance of Aqueous Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
45
(
3
), pp.
483
493
.
7.
McGrew
,
J. L.
,
Bamford
,
F. L.
, and
Rehm
,
T. R.
,
1966
, “
Marangoni Flow: An Additional Mechanism in Boiling Heat Transfer
,”
Science
,
153
(
3740
), pp.
1106
1107
.
8.
Huplik
,
V.
, and
Raithby
,
G. D.
,
1972
, “
Surface-Tension Effects in Boiling From A Downward-Facing Surface
,”
ASME J. Heat Transfer
,
94
, pp.
403
409
.
9.
Straub
,
J.
,
Picker
,
G.
,
Winter
,
J.
, and
Zell
,
M.
,
1997
, “
Effective Cooling of Electronic Components by Boiling Phase Transition in Microgravity
,”
Acta Astronaut.
,
40
, pp.
119
127
.
10.
Arlabosse, P., Tadrist, H., Pantaloni, J., and Tadrist, L., 1998, “Experimental Study of Marangoni Convection Around A Bubble: Application to the Boiling Heat Transfer Under Microgravity Conditions,” Heat Transfer 1998, 2, KSME, Seoul, Korea, pp. 371–376.
11.
Baranenko
,
V. I.
, and
Chichkan
,
L. A.
,
1980
, “
Thermocapillary Convection in the Boiling of Various Fluids
,”
Heat Transfer-Sov. Res.
,
12
(
2
), pp.
40
44
.
12.
Straub
,
J.
,
2000
, “
Microscale Boiling Heat Transfer Under 0 g and 1 g Conditions
,”
Int. J. Therm. Sci.
,
39
, pp.
490
497
.
13.
Marek
,
R.
, and
Straub
,
J.
,
2001
, “
The Origin of Thermocapillary Convection in Subcooled Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
44
, pp.
619
632
.
14.
Beer, H., 1979, “Interferometry and Holography in Nucleate Boiling,” in Boiling Phenomena, S. Van Stralen and R. Cole, Eds., 2, Hemisphere, New York, NY, pp. 821–843.
15.
Ilyin, I. N., Grivtsov, V. P., and Yaundalders, S. R., 1982, “Holographic Interferometry Studies of Temperature Profiles in Thermal Boundary Layer in Free Convection and Bubble Boiling,” Heat Transfer 1982, U. Grigull et al., Eds., 4, Mu¨nchen, Germany, pp. 55–59.
16.
Raake
,
D.
,
Siekmann
,
J.
, and
Chun
,
C.-H.
,
1989
, “
Temperature and Velocity Fields due to Surface Tension Driven Flow
,”
Exp. Fluids
,
7
, pp.
164
172
.
17.
Wozniak
,
G.
,
Wozniak
,
K.
, and
Bergelt
,
H.
,
1996
, “
On the Influence of Buoyancy on the Surface Tension Driven Flow Around Bubble on A Heated Wall
,”
Exp. Fluids
,
21
, pp.
181
186
.
18.
Rashidnia
,
N.
,
1997
, “
Bubble Dynamics on A Heated Surface
,”
J. Thermophys. Heat Transfer
,
11
, pp.
477
480
.
19.
Larkin
,
B. K.
,
1970
, “
Thermocapillary Flow Around Hemispherical Bubble
,”
AIChE J.
,
16
, pp.
101
107
.
20.
Gaddis
,
E. S.
,
1972
, “
The Effects of Liquid Motion Induced By Phase Change and Thermocapillarity on the Thermal Equilibrium of A Vapor Bubble
,”
Int. J. Heat Mass Transfer
,
15
, pp.
2241
2250
.
21.
Kao
,
Y. S.
, and
Kenning
,
D. B. R.
,
1972
, “
Thermocapillary Flow Near A Hemispherical Bubble on A Heated Wall
,”
J. Fluid Mech.
,
53
, pp.
715
735
.
22.
Jabardo, J. M. S., 1981, “Investigation of Thermocapillary Flows Around Hemispherical Bubbles,” Ph.D. thesis, University of Illinois at Urbana-Champaign, IL.
23.
Straub
,
J.
,
Betz
,
J.
, and
Marek
,
R.
,
1994
, “
Enhancement of Heat Transfer by Thermocapillary Convection Around Bubbles–A Numerical Study
,”
Numer. Heat Transfer, Part A
,
25
, pp.
501
518
.
24.
Arlabosse
,
P.
,
Lock
,
N.
,
Medale
,
M.
, and
Jaeger
,
M.
,
1999
, “
Numerical Investigation of Thermocapillary Flow Around A Bubble
,”
Phys. Fluids
,
11
, pp.
18
29
.
25.
Sadhal, S. S., Ayyaswami, P. S., and Chung, J. N., 1997, Transport Phenomena with Drops and Bubbles, Springer, New York, NY.
26.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Sites on a Heating Surface
,”
ASME J. Heat Transfer
,
84
, pp.
207
216
.
27.
Dergarabedian
,
P.
,
1960
, “
Observations on Bubble Growths in Various Superheated Liquids
,”
J. Fluid Mech.
,
9
, pp.
39
48
.
28.
Kenning, D. B. R., and Cooper, M. G., 1965, “Flow Patterns Near Nuclei and the Initiation of Boiling During Forced Convection Heat Transfer,” Proceedings of the Institution of Mechanical Engineers 1965–66, Vol. 180, Pt. 3C, Paper 11, pp. 112–123.
29.
Han
,
C.-H.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling—Part I: Bubble Initiation, Growth and Departure
,”
Int. J. Heat Mass Transfer
,
8
, pp.
887
904
.
30.
Hahne, E., and Ribeiro, R., 1998, “Single Bubble Heat Transfer in Nucleate Pool Boiling,” Heat Transfer 1998, 2, KSME, Seoul, Korea, pp. 503–508.
31.
Kant
,
K.
, and
Weber
,
M.
,
1994
, “
Stability of Nucleation Sites in Pool Boiling
,”
Exp. Therm. Fluid Sci.
,
9
, pp.
456
465
.
32.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Signle Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
121
, pp.
613
631
.
33.
Wu
,
W. T.
,
Yang
,
Y. M.
, and
Maa
,
J. R.
,
1999
, “
Pool Boiling Incipience and Vapor Bubble Growth Dynamics in Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
42
, pp.
2483
2488
.
34.
Wu, W. T., and Yang, Y. M., 1992, “Enhanced Boiling Heat Transfer by Surfactant Additives,” in Pool and External Flow Boiling, ASME, New York, NY, pp. 361–366.
35.
Dushkin
,
C. D.
, and
Iliev
,
Tz. H.
,
1994
, “
Dynamic Surface Tension of Micellar Solutions Studied by the Maximum Bubble Pressure Method: 2. Theory of the Solutions Below CMC
,”
Colloid Polym. Sci.
,
272
, pp.
1157
1165
.
36.
Ferri
,
J. K.
, and
Stebe
,
K. J.
,
2000
, “
Which Surfactants Reduce Surface Tension Faster? A Scaling Argument for Diffusion-Controlled Adsorption
,”
Adv. Colloid Interface Sci.
,
85
, pp.
61
97
.
37.
Manglik
,
R. M.
,
Wasekar
,
V. M.
, and
Zhang
,
J.
,
2001
, “
Dynamic and Equilibrium Surface Tension of Aqueous Surfactant and Polymeric Solutions
,”
Exp. Therm. Fluid Sci.
,
25
(
1–2
),
55
64
.
38.
Chang
,
C.-H.
, and
Franses
,
E. I.
,
1995
, “
Adsorption Dynamics of Surfactants at the Air/Water Interfaces: A Critical Review of Mathematical Models, Data, and Mechanisms
,”
Colloids Surf., A
,
100
, pp.
1
45
.
39.
Dukhin, S. S., Kretzschmar, G., and Miller, R., 1995, Dynamics of Adsorption at Liquid Interfaces, Elsevier, Amsterdam.
40.
Eastoe
,
J.
, and
Dalton
,
J. S.
,
2000
, “
Dynamic Surface Tension and Adsorption Mechanisms of Surfactants at the Air-Water Interface
,”
Adv. Colloid Interface Sci.
,
85
, pp.
103
144
.
41.
Hewitt, G. F., 1998, “Boiling,” in Handbook of Heat Transfer, W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds., 3rd Edition, McGraw-Hill, New York, NY, Chpt. 15.
42.
Davis
,
E. J.
, and
Anderson
,
G. H.
,
1966
, “
The Incipience of Nucleate Boiling in Forced Convection Flow
,”
AIChE J.
,
12
, p.
774
774
.
43.
Kenning, D. B. R., and Toral, H., 1977, “On the Assessment of Thermocapillary Effects in Nucleate Boiling of Pure Fluids,” Proceedings of International Conference on Physicochemical Hydrodynamics, 1, Oxford, UK, pp. 653–665.
44.
Shakir, S., Thome, J. R., and Lloyd, J. R., 1985, “Boiling of Methanol-Water Mixtures on Smooth and Enhanced Surfaces,” in Multiphase Flow and Heat Transfer, HTD—Vol. 47, ASME, New York, NY, pp. 1–6.
45.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1992
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on A Vertical Surface
,”
ASME J. Heat Transfer
,
115
, pp.
659
669
.
46.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1994
, “
Fully Developed Laminar Heat Transfer in Circular-Segment Ducts With Uniform Wall Temperature
,”
Numer. Heat Transfer, Part A
,
26
, pp.
499
519
.
47.
Cuenot
,
B.
,
Magnaudet
,
J.
, and
Spennato
,
B.
,
1997
, “
The Effects of Slightly Soluble Surfactants on the Flow Around A Spherical Bubble
,”
J. Fluid Mech.
,
339
, pp.
25
53
.
48.
Wasekar, V. M., and Manglik, R. M., 2001, “Nucleate Pool Boiling Heat Transfer in Aqueous Surfactant Solutions,” Report No. TFTPL-4, Thermal-Fluids & Thermal Processing Laboratory, University of Cincinnati, Cincinnati, OH.
You do not currently have access to this content.