Conjugate heat transfer has significant relevance to a number of thermal systems and techniques which demand stringent temperature control, such as electronic cooling and chemical vapor deposition. A detailed experimental and numerical study is carried out to investigate conjugate heat transfer in a common configuration consisting of a horizontal channel with a heated section. Experimental data obtained from this study provides physical insight into conjugate heat transfer effects and facilitates validation of numerical conjugate heat transfer models. The basic characteristics of the flow and the associated thermal transport are studied. The numerical model is used to carry out a parametric study of operating conditions and design variables, thus allowing for the characterization of the conjugate heat transfer effects. It is found that the numerically predicted flow field and heat transfer results validate well to experimental observations. Conjugate heat transfer is shown to significantly affect the temperature level and uniformity at the heated section’s surface, channel walls and the gas phase, thus impacting the rate of heat transfer. This study provides guidelines and fundamental insight into temperature control during the combined modes of heat transfer, with implications to various thermal manufacturing methods.

1.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensioanl Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transf.
,
43
, pp.
399
415
.
2.
Heindel
,
T. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1995
, “
Conjugate Natural Convection from an Array of Discrete Heat Sources: 1. Two- and Three-Dimensional Model Validation
,”
Int. J. Heat Mass Transf.
,
16
, pp.
501
510
.
3.
Sugavanam
,
R. A.
,
Ortega
,
A.
, and
Choi
,
C. Y.
,
1995
, “
A Numerical Investigation of Conjugate Heat Transfer from a Flush Heat-Source on a Conductive Board in Laminar Channel Flow
,”
Int. J. Heat Mass Transf.
,
38
, pp.
2969
2984
.
4.
Aronov
,
B.
, and
Zvirin
,
Y.
,
1999
, “
A Novel Algorithm to Investigate Conjugate Heat Transfer in Transparent Insulation: Application to Solar Collectors
,”
Numer. Heat Transfer, Part A
,
35
, pp.
757
777
.
5.
Chiu
,
W. K. S.
,
Glumac
,
N. G.
, and
Jaluria
,
Y.
,
2000
, “
Numerical Simulation of Chemical Vapor Deposition Processes Under Variable and Constant Property Approximations
,”
Numer. Heat Transfer, Part A
,
37
, pp.
113
132
.
6.
Mahajan
,
R. L.
,
1996
, “
Transport Phenomena in Chemical Vapor-Deposition Systems
,”
Adv. Heat Transfer
,
28
, pp.
339
425
.
7.
Lin
,
P.
, and
Jaluria
,
Y.
,
1998
, “
Conjugate Thermal Transport in the Channel of an Extruder for Non-Newtonian Fluids
,”
Int. J. Heat Mass Transf.
,
41
, pp.
3239
3253
.
8.
Chinoy
,
P. B.
,
Kaminski
,
D. A.
, and
Ghandhi
,
S. K.
,
1991
, “
Effects of Thermal Radiation on Momentum, Heat, and Mass Transfer in a Horizontal Chemical Vapor Deposition Reactor
,”
Numer. Heat Transfer, Part A
,
19
, pp.
85
100
.
9.
Durst
,
F.
,
Kadinski
,
L.
, and
Scha¨fer
,
M.
,
1995
, “
A Multigrid Solver for Fluid Flow and Mass Transfer Coupled with Grey-Body Surface Radiation for the Numerical Simulation of Chemical Vapor Deposition Processes
,”
J. Cryst. Growth
,
146
, pp.
202
208
.
10.
Fotiadis
,
D. I.
,
Kieda
,
S.
, and
Jensen
,
K. F.
,
1990
, “
Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy
,”
J. Cryst. Growth
,
102
, pp.
441
470
.
11.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Taylor & Francis, Philadelphia, PA.
12.
Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., 1988, Buoyancy-Induced Flows and Transport, Taylor & Francis, Philadelphia, PA.
13.
Panton, R. L., 1984, Incompressible Flow, John Wiley & Sons, Inc., NY.
14.
Incropera, F. P., and DeWitt, D. P., 1990, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc., NY.
15.
Ku, A. C., Doria, M. L., and Lloyd, J. R., 1976, “Numerical Modeling of Buoyant Flows Generated by Fire in a Corridor,” Proc. 16th Symp. (Int.) on Combustion, Combustion Institute, pp. 1372–1384.
16.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, Philadelphia, PA.
17.
Jaluria, Y. and Torrance, K. E., 1986, Computational Heat Transfer, Hemisphere Publishing Corporation, USA.
18.
Chiu
,
W. K. S.
,
Richards
,
C. J.
, and
Jaluria
,
Y.
,
2000
, “
Flow Structure and Heat Transfer in a Horizontal Converging Channel Heated from Below
,”
Phys. Fluids
,
37
, pp.
2128
2136
.
You do not currently have access to this content.