The recent emphasis on low-cost high-end servers and desktop workstations has resulted in a renewed interest in the development of high-performance air-cooled systems. A new generation of advanced heat sink designs capable of dissipating up to 105 W/m2 have been proposed and developed. Better manufacturing tolerances, lower defects, and an improved understanding of card and enclosure effects have been attained and shown to be critical to achieving the desired thermal performance. Advanced internal thermal enhancements, encompassing high thermal conductivity adhesives and greases have also been implemented. This review article covers recent developments in heat sink designs and applications intended for high-end high-power dissipation systems. A review of recent studies of card effects in the thermal enhancement of electronic packages is also presented. In certain applications the card heat-sinking effect can play a major role in the thermal management of a package, accounting for more than 50 percent of the total power dissipation of the package.

1.
Aihara
T.
,
Maruyama
S.
, and
Kobayakawa
S.
,
1990
, “
Free convective/radiative heat transfer from pin-fin arrays with a vertical base plate (general representation of heat transfer performance)
,”
Int. J. Heat Mass Transfer
, Vol.
33
, No.
6
, pp.
1223
1232
.
2.
Aung, W., Fletcher, L. S., and Sernas, V., 1992, “Developing Laminar Free Convection Between Vertical Flat Plates with Asymmetric Heating,” Int J Heat Mass Transfer, Vol. 15.
3.
Azar
K.
, and
Mandrone
C. D.
,
1994
, “
Effect of Pin-Fin Density of the Thermal Performance of Unshrouded Pin-Fin Heat Sinks
,”
ASME Journal of Electronic Packaging
, Vol.
116
, pp.
306
309
.
4.
Azar, K., McLeod, R. S., and Caron, R. E., 1992, “Narrow Channel Heat Sink for High Powered Electronic Components,” Proc. Eighth IEEE SEMITHERM Conf., Piscataway, NJ, pp. 12–19.
5.
Azar, K., Pan, S. S., Parry, J., and Rosten, H., 1994, “Effect of Circuit Board Parameters on Thermal Performance of Electronic Components in Natural Convection Cooling,” Tenth IEEE Semi-Therm, San Jose, CA, Feb. 1-3, p. 32.
6.
Bartilson, B. W., 1991, “Air jet impingement on a miniature pin-fin heat sink,” ASME WAM, Atlanta, GA, Dec., paper no. 91-WA-EEP-41.
7.
Birnbreier, H., 1981, “Experimental Investigations on the Temperature Rise of Printed Circuit Boards in Open Cabinets with Natural Ventilation,” ASME HTD-Vol. 20, pp. 19–23.
8.
Biskeborn, R. G., Horvath, J. L., and Hultmark, E. B., 1984, “Integral cap heat sink assembly for the IBM 4381 processor,” 1984, Proc. of the Fourth Annual Intl. Electronic Packaging Society Conf., Baltimore, MD, pp. 468–474.
9.
Brown, J. F., Lisabeth, R., and Shirazi, S. A., 1993, “Magnesium Heat Sink Evaluations,” SAE Special Publication, No. 962, pp. 27–36.
10.
Chapman, C. L., Lee, S., and Schmidt, W. L., 1994, “Thermal Performance of an Elliptical Pin-Fin Heat Sink,” Proc. Tenth IEEE SEMI-Therm Symposium, pp. 24–31.
11.
Constans, E. W., Belegundu, A. D., and Kulkarni, A. K., 1994, “Optimization of a Pin-Fin Heat Sink: A Design Tool,” CAE/CAD Application to Electronic Packaging, ASME EEP-Vol. 9, pp. 25–32.
12.
Dunn, R. M., Schulman, M., and Timko, N., 1981, “Electronic circuit module cooling,” United States Patent No. 4,277186, Aug. 13.
13.
Elenbaas, W., 1942, “Heat Dissipation of Parallel Plates by Free Convection,” Physica, Vol. 9, No. 1.
14.
Fisher
T. S.
,
Torrance
K. E.
, and
Sikka
K. K.
,
1997
, “
Analysis and Optimization of a Natural Draft Heat Sink System
,”
IEEE Transactions on Components, Packaging and Manufacturing Technology
, Part A, Vol.
20
, pp.
111
119
.
15.
Fisher
T. S.
, and
Torrance
K. E.
,
1998
, “
Free Convection Limits for Pin-Fin Cooling
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
120
, pp.
633
640
.
16.
Fitch, J. S., 1990, “A one dimensional thermal model for the VAX 9000 multichip units,” Thermal modeling and design of electronic systems and devices, Wirtz, R. A. and G. L. Lehmann, eds., ASME WAM, Dallas, TX, HTD-Vol. 153, pp. 59–64.
17.
Gale, H. E., 1982, “Printed wiring Board Z axis Thermal Resistance Reduction,” Second Annual International Packaging Conference, IEPS Proceedings, Nov. 15-17, pp. 296–306.
18.
Goldberg, N., 1984, “Narrow channel forced air heat sink,” IEEE transactions on components, hybrids, and manufacturing technology, Vol. CHMT-7, No. 1, Mar.
19.
Graham, K., and Witzman, S., 1987, “Analytical Correlation of Thermal Design of Electronic Packages,” Proc. of the International Symposium on Cooling Electronic Equipment, Honolulu, HI, pp. 249–264.
20.
Hamilton, J. L., 1976, “On the Effect of the Circuit Boards’ Thermal Conductivity in The Thermal Performance of a Circuit Package Employing a DIP Device,” ASME 76-WA/HT-30.
21.
Heng, S., and Pei, J., 1991, “Air impingement cooled pin-fin heat sink formultichip unit,” Proc. National electronic packaging and production conference, Vol. 2, Des Plaines, IL.
22.
Hilbert, C., Sommerfeldt, S., Gupta, O., and Herrell, D. J., 1990, “High Performance Air Cooled Heat Sinks for Integrated Circuits,” IEEE Transaction on Components, Hybrids and Manufacturing Technology, Vol. 13, No. 4, Dec.
23.
Holman, J. P., 1981, Heat Transfer, 5th Ed., McGraw-Hill, New York.
24.
Kadle
D. S.
, and
Sparrow
E. M.
,
1986
, “
Numerical and experimental study of turbulent heat transfer and fluid flow in longitudinal fin arrays
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
108
, p.
16
16
.
25.
Kiley, R. F., and Soule, C. A., 1990, “Engineered heat sinks,” Powertechnics Magazine, July.
26.
Kitajo, S., Takeda, Y., Kurokawa, Y., and Ohta, T., 1992, “Development of a High Performance Air-Cooled Heat Sink for Multi-Chip Modules,” Eighth IEEE Semi-Therm Symposium, Austin, TX. pp. 119–124.
27.
Knight, R. W., Goodling, J. S., and Gross, B. E., 1992, “Optimal Thermal Design of Air-Cooled Forced Convection Heat Sinks—Experimental Verification,” IEEE Intersociety Conference on Thermal Phenomena, Piscataway, NJ, pp. 206–212.
28.
Knight
R. W.
,
Goodling
J. S.
, and
Hall
D. J.
,
1991
, “
Optimal Thermal Design of Forced Convection Heat Sinks—Analytical
,”
ASME Journal of Electronic Packaging
, Vol.
113
, pp.
313
321
.
29.
Kraus, A. D., and Bar-Cohen, A., 1995, Design and analysis of heat sinks, John Wiley and Sons, New York.
30.
Ledezma
G.
,
Morega
A. M.
, and
Bejan
A.
,
1996
, “
Optimal Spacing Between Pin Fins With Impinging Flow
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, pp.
570
577
.
31.
Lee, S., Culham, J. R., and Yovanovich, M. M., 1991, “Parametric Investigation of Conjugate Heat Transfer from Microelectronic Circuit Boards Under Mixed Convection Cooling,” IEPS Conf. Proceedings, Vol. 1, San Diego, CA, Sept., pp. 428–446.
32.
Lee, S., Lemczyk, T. F., and Yovanovich, M. M., 1992, “Analysis of Thermal Vias in High Density Interconnect Technology,” Eighth annual IEEE Semiconductor thermal measurement and management symposium, Feb. 3-5, Austin, TX.
33.
Mahalingam, M., and Andrews, J., 1988, “High Performance air cooling for microelectronics,” Cooling Technology for Electronic Equipment, W. Aung, ed., Hemisphere, Washington, DC.
34.
Mahaney, H. V., and Vader, D. T., 1993, “Predicted and measured performance of an advanced laminated heat sink formulti-chip modules,” Enhanced Cooling Techniques for Electronics Applications, ASME, New York, pp. 49–57.
35.
Malhammer, A., 1991, “Heat Dissipation Limits for Components Cooled by the PCB surface,” IEPS Conf. Proceedings, Vol. 1, San Diego, CA, Sept., pp. 304–311.
36.
Mansuria
M. S.
, and
Kamath
V.
,
1994
, “
Design Optimization of a High Performance Heat Sink/Fan Assembly
,”
ASME Heat Transfer Development; Heat Transfer in Electronic Systems
, Vol.
292
, pp.
95
104
.
37.
Matsushima
H.
, and
Yanagida
T.
,
1992
, “
Heat Transfer from Finned LSI Packages in a Channel between Circuit Boards
,”
Heat Transfer Japanese Research
, Vol.
21
, No.
2
, pp.
165
176
.
38.
McPhee, J. M., O’Toole, T. S., and Yedvabny, M., 1990, “Cooling the VAX 9000,” Electro/90, Conference Record, Boston, MA, pp. 288–292.
39.
Mertol
A.
,
1993
, “
Optimization of Extruded Type External Heat Sink for Multichip Module
,”
ASME Journal of Electronic Packaging
, Vol.
115
, pp.
440
444
.
40.
Metzger, D. E., Fan, C. S., and Pennington, J. W., 1983, “Heat transfer and flow friction characteristics of very rough transverse ribbed surfaces with and without pin fins,” Proceedings of the ASME-JSME Thermal engineering joint conference, Vol. 1, pp. 429–436.
41.
Minakami, K., Mochizuki, S., Murata, A., and Yagi, Y., 1992, High Performance Air-Cooling for LSIs Utilizing a Pin Fin Heat Sink, Paper No. 92-WA/EEP-5, ASME Winter Annual Meeting, Anaheim, CA.
42.
Mok, L., 1994, “Thermal Management of Silicon-based Multichip Modules,” Proc. Tenth IEEE Semitherm Symposium, Piscataway, NJ, pp. 59–63.
43.
Morega
M.
, and
Bejan
A.
,
1994
, “
Plate-fins with Variable Thickness and Height for Air-Cooled Electronic Modules
,”
Int. J. Heat and Mass Transfer
, Vol.
37
, Suppl.
1
, pp.
433
445
.
44.
Morrison, A. T., 1992, “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection,” Proc. Intersociety Conference on Thermal Phenomena, pp. 145–148.
45.
Oktay, S., Dessauer, B., and Horvath, J. L., 1983, “New internal and external cooling enhancements for the IBM 4381 module,” ICCD 83, Proc. of the IEEE Intl. conference on computer design: VLSI in Computers, Port Chester, NJ.
46.
Sathe
S. B.
, and
Tai
C.
,
1994
, “
Pin Fin Heat Sink Impingement Cooling Enhancement Using Flow Baffles
,”
IBM Technical Disclosure Bulletin
, Vol.
37
, No.
2A
, Feb., pp.
275
276
.
47.
Sathe
S. B.
,
Kelkar
K. M.
,
Karki
K. C.
,
Tai
C.
,
Lamb
C. R.
, and
Patankar
S. V.
,
1997
, “
Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink
,”
ASME Journal of Electronic Packaging
, Vol.
119
, pp.
58
63
.
48.
Sathe, S. B., Sammakia, B. G., Wong, A. C., and Mahaney, H. V., 1995, A Numerical Study of a High Performance Air-Cooled Impingement Heat Sink,” Proc. National Heat Transfer Conference, Portland, OR, ASME HTD-Vol. 303, pp. 43–53.
49.
Sathe, S. B., and Sammakia, B. G., 1996, “A numerical study of the thermal performance of a tape ball grid array (TBGA) package,” ASME HTD-Vol. 329, pp. 83–93, also accepted for publication in the ASME Journal of Electronic Packaging.
50.
Shaukatullah, H., and Gaynes, M. A., 1994, “Experimental Determination of the Effect of Printed Circuit Card on the Thermal Performance of Surface Mount Electronic Packages,” Tenth annual IEEE Semiconductor thermal measurement and management symposium, Feb. 1-3, San Jose, CA.
51.
Shaukatullah, H., Storr, W. R., Hanse, B. J., and Gaynes, M. A., 1996, “Design and Optimization of Pin Fin Heat Sinks for Low Velocity Applications,” 12th IEEE SEMI-THERM Symposium Proceedings, pp. 151–163.
52.
Soule, C. A., 1993, “Air and liquid cooled techniques for high power density components,” Power conversions and intelligent motion, Vol. 19, No. 11.
53.
Sparrow
E. M.
, and
Kadle
D., S.
,
1986
, “
Effect of Tip-to-shroud Clearance on Turbulent Heat Transfer From a Shrouded, Longitudinal Fin Array
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
108
, p.
519
519
.
54.
Sparrow
E. M.
,
Niethammer
J. E.
, and
Chaboki
A.
,
1982
, “
Heat Transfer and Pressure Drop Characteristics of Arrays of Rectangular Modules Encountered in Electronic Equipment
,”
Int. J. Heat Mass Transfer
, Vol.
25
, No.
7
, pp.
961
973
.
55.
Sparrow
E. M.
, and
Ramsey
J. W.
,
1978
, “
Heat Transfer and Pressure Drop For a Staggered Wall-attached Array of Cylinders With Tip Clearance
,”
Int. J. Heat and Mass Transfer
, Vol.
21
, pp.
1369
1377
.
56.
Sparrow
E. M.
,
Ramsey
J. W.
, and
Altemani
C. A. C.
,
1980
, “
Experiments on in-line pin fin arrays and performance: Comparisons with staggered arrays
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
102
, pp.
44
50
.
57.
Sparrow
E. M.
,
Vemuri
S. B.
, and
Kadle
D. S.
,
1983
, “
Enhanced and local heat transfer, pressure drop, and flow visualization for arrays of block like electronic components
,”
Int. J. Heat and Mass Transfer
, Vol.
26
, No.
5
, pp.
689
699
.
58.
Steuber, G. D., and Metzger, D. E., 1986, “Heat Transfer and Pressure Loss Performance for Families of Partial Length Pin Fin Arrays In High Aspect Ratio Rectangular Ducts,” Proceedings of the Eighth International Heat Transfer Conference, pp. 2915–2920.
59.
Tahat
M. A.
,
Babus’Haq
R. F.
, and
Probert
S. D.
,
1994
, “
Forced Steady State Convections From Pin-Fin Array
,”
Applied Energy
, Vol.
48
, No.
4
, pp.
335
351
.
60.
Takubo, C., Tazawa, H., Yoshida, A., Hirata, S., Hiruta, Y., and Sudo, T., 1993, “A Remarkable Thermal Resistance Reduction In A Tape Carrier Package on a Printed Circuit Board,” ITAP Proceedings, pp. 44–51.
61.
Tuckerman
D. B.
, and
Pease
R. F. W.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Dev. Letters
, Vol.
EDL-2
, No.
5
, pp.
126
129
.
62.
Vogel, M. R., 1994, “Thermal Performance of Air-Cooled Hybrid Heat Sinks for a Low Velocity Environment,” Proc. Tenth IEEE Semitherm Symposium, pp. 17–22.
63.
Wirtz
R. A.
,
Chen
W.
, and
Zhou
R.
,
1994
, “
Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks
,”
ASME Journal of Electronic Packaging
, Vol.
116
, pp.
206
211
.
64.
Wirtz
R. A.
,
Sohal
R.
, and
Wang
H.
,
1997
, “
Thermal Performance of Pin-Fin Fan-Sink Assemblies
,”
ASME Journal of Electronic Packaging
, Vol.
119
, pp.
26
31
.
This content is only available via PDF.
You do not currently have access to this content.