This review considers the many techniques that have been developed to enhance convective heat transfer. After introducing the techniques, the applications to most of the modes of heat transfer (single-phase forced convection, including compound techniques, pool boiling, convective boiling/evaporation, vapor-space condensation, and convective condensation) are described. Comments are offered regarding commercial introduction of this technology and the generations of heat transfer technology; advanced enhancement represents third-generation heat transfer technology.

1.
Amon
C. H.
,
1993
, “
Spectral Element Fourier Method for Transitional Flows in Complex Geometries
,”
AIAA Journal
, Vol.
6
, No.
1
, pp.
42
48
.
2.
Anon, 1996, “A New Mix for ‘SUVA’,” ASHRAE Journal, July, p. 13.
3.
Bejan, A., 1995, Entropy Generation Minimization, CRC Press, Boca Raton, FL.
4.
Bergles, A. E., 1985, Techniques to Augment Heat Transfer, Chap. 3 in Handbook of Heat Transfer Applications, McGraw-Hill, New York, pp. 3–1, 3–80.
5.
Bergles
A. E.
,
1988
, “
Some Perspectives on Enhanced Heat Transfer Second Generation Heat Transfer Technology
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
110
, pp.
1082
1096
.
6.
Bergles, A. E., 1996, “Heat Transfer Enhancement The Maturing of Second-Generation Heat Transfer Technology,” Kern Award Lecture submitted to Heat Transfer Engineering for publication.
7.
Bergles, A. E., Jensen, M. K., and Shome, B., 1995, “Bibliography on Enhancement of Convective Heat and Mass Transfer,” Heat Transfer Laboratory Report HTL-23, Rensselaer Polytechnic Institute, Troy, NY. Introduction to appear in Journal of Enhanced Heat Transfer.
8.
Bergles, A. E., and Kim, C. J., 1988, “A Method to Reduce Temperature Overshoots in Immersion Cooling of Electronic Devices,” Proceedings of the Inter Society Conference on Thermal Phenomena in the Fabrication and Operation of Electronic Components, IEEE, New York, NY, pp. 100–105.
9.
Chen
S. J.
,
Lothavi
J.
, and
Tseng
A. A.
,
1991
, “
Cooling of a Moving Plate with an Impinging Circular Water Jet
,”
Experimental Thermal and Fluid Science
, Vol.
4
, pp.
343
353
.
10.
Ciofalo, M., and Collins, M. W., 1989, “Predictions of Heat Transfer for Turbulent Flow in Plane and Rib-Roughened Channels Using Large Eddy Simulation,” Proceedings of the Seventh National Congress on Heat Transfer, Bologna, Italy, pp. 57–72.
11.
Eason
R. M.
,
Bayazitoglu
Y.
, and
Miade
A.
,
1994
, “
Enhancement of Heat Transfer in Square Helical Ducts
,”
International Journal of Heat Mass Transfer
, Vol.
37
, pp.
2077
2087
.
12.
Eckels
S. J.
,
Doerr
T. M.
, and
Pate
M. B.
,
1994
a, “
Heat Transfer and Pressure Drop of R-134a and Ester Lubricant Mixtures in a Smooth and a Micro-fin Tube: Part I-Evaporation
,”
ASHRAE Transactions
, Vol.
100
, Part 2, pp.
265
281
.
13.
Eckels
S. J.
,
Doerr
T. M.
, and
Pate
M. G.
,
1994
b, “
In-Tube Heat Transfer and Pressure Drop of R-134a and Ester Lubricant Mixtures in a Smooth Tube and a Micro-Fin Tube: Part II-Condensation
,”
ASHRAE Transactions
, Vol.
100
, Part 2, pp.
283
294
.
14.
Fagerholm, N. E., Kivoja, K., Ghazanfari, A. R., and Jarvinen, E., 1986, “Using Structured Surfaces to Enhance Heat Transfer in Falling Film Flow,” Institute of Energy Engineering, Helsinki University of Technology, Helsinki, Finland, pp. 1–35.
15.
Fiebig, M., 1996, “Vortices: Tools to Influence Heat Transfer. Recent Developments,” Proceedings of the 2nd European Thermal-Sciences and 14th UIT National Heat Transfer Conference, Edizioni FTS, Pisa, Italy, Vol. 1, p. 41–56.
16.
Fiebig, M., and Sanchez, M. A., 1992, “Enhancement of Heat Transfer and Pressure Loss by Winglet Vortex Generators in a Fin Tube Element,” Compact Heat Exchangers for Power and Process Industries, HTD-Vol. 201, ASME, New York, NY, pp. 7–14.
17.
Fujii
M.
,
Seshimo
Y.
,
Veno
S.
, and
Yamanaka
G.
,
1989
, “
Forced Air Heat Sink with New Enhanced Fins
,”
Heat Transfer-Japanese Research
, Vol.
18
, No.
6
, pp.
53
65
.
18.
Fukusako, S., Yamada, M., Kimoshita, K., and Kawake, H., 1991, “Boiling Heat Transfer in Liquid-Saturated Porous Bed,” Proceedings of the 1991 ASME-JSME Thermal Engineering Joint Conference, Vol. 2, JSME, Tokyo, Japan and ASME, New York, NY, pp. 281–288.
19.
Gau
C.
, and
Lee
C. C.
,
1992
, “
Impingement Cooling Flow Structure and Heat Transfer Along Rib-Roughened Walls
,”
International Journal of Heat Mass Transfer
, Vol.
35
, pp.
3009
3020
.
20.
Gentry, M. C., DeJong, N. C., and Jacobi, A. M., 1996, “Evaluating the Potential of Vortex-Enhanced Evaporator Performances for Refrigeration Applications,” to be published in ASHRAE Transactions, Vol. 102.
21.
Greiner
M.
,
1991
, “
An Experimental Investigation of Resonant Heat Transfer Enhancement in Grooved Channels
,”
International Journal of Heat and Mass Transfer
, Vol.
34
, pp.
1383
1391
.
22.
Greiner, M., Ghaddar, N. K., Mikic, B. B., and Patera, A. T., 1986, “Resonant Convective Heat Transfer in Grooved Channels,” Heat Transfer 1986, Proceedings of the Eighth International Heat Transfer Conference, Vol. 6, Hemisphere, Washington, D.C., pp. 2867–2872.
23.
Hong, J. S., 1993, “The Study of Ultrasonic Enhancement in Phase-Change Process,” ASME Paper No. 93-HT-2.
24.
Inagaki
T.
, and
Komori
K.
,
1993
, “
Experimental Study of Heat Transfer Enhancement in Turbulent Natural Convection Along a Vertical Flow Plate-Part 1: The Effect of Injection or Suction
,”
Heat Transfer Japanese Research
, Vol.
22
, pp.
387
397
.
25.
Jacobi
A. M.
, and
Shah
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through Use of Longitudinal Vortices: A Review of Recent Progress
,”
Experimental Thermal and Fluid Science
, Vol.
11
, pp.
295
309
.
26.
Jakob, E., 1988, “Max Jakob, July 20, 1879-January 4, 1955, Fifty Years of His Work and Life,” History of Heat Transfer, ASME, New York, NY, pp. 87–116.
27.
Jakob
M.
,
1936
, “
Heat Transfer in Evaporation and Condensation-1 and 2
,”
Mechanical Engineering
, Vol.
58
, pp.
643
660
.
28.
Jakob
M.
, and
Fritz
W.
,
1931
, “
Versuche U¨ber den Verdampfungsvorgang
,”
Forschung auf dem Gebiete des Ingenieurwesens
, Vol.
2
, pp.
435
437
.
29.
Jakob, M., and Hawkins, G. A., 1957, Elements of Heat Transfer, 3rd Edition, Wiley, New York, NY.
30.
Kays, W. C., and London, A. L., 1984, Compact Heat Exchangers, 3rd Ed., McGraw Hill, New York.
31.
Kedzierski, M. A., 1993, “Simultaneous Visual and Calorimetric Measurements of R-11, R-123, and R-123 Alkybenzene Nucleate Flow Boiling,” Heat Transfer with Alternate Refrigerants, HTD-Vol. 243, ASME, New York, NY, pp. 27–33.
32.
Lee
J. H.
, and
Singh
R. K.
,
1990
, “
Mathematical Models of Scraped Surface Heat Exchangers in Relation to Food Sterilization
,”
Chemical Engineering Communications
, Vol.
87
, pp.
21
52
.
33.
Manglik
R. M.
, and
Bergles
A. E.
,
1993
a, “
Heat Transfer and Pressure Drop Correlation for Twisted-Tape Inserts in Isothermal Tubes: Part I, Laminar Flows
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
881
889
.
34.
Manglik
R. M.
, and
Bergles
A. E.
,
1993
b, “
Heat Transfer and Pressure Drop Correlation for Twisted-Tape Inserts in Isothermal Tubes: Part II, Transition and Turbulent Flows
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
890
896
.
35.
Manglik
R. M.
, and
Bergles
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Experimental Thermal and Fluid Science
, Vol.
10
, pp.
171
180
.
36.
McGillis
W. R.
, and
Carey
V. P.
,
1996
, “
On the Role of Marangoni Effects on the Critical Heat Flux for Pool Boiling of Binary Mixtures
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, pp.
103
109
.
37.
Memory
S. B.
,
Sagiyama
D. C.
, and
Marto
P. J.
,
1995
a, “
Nucleate Pool Boiling of R-114 and R-114-Oil Mixtures from Smooth and Enhanced Surfaces-I Single Tubes
,”
International Journal of Heat Mass Transfer
, Vol.
38
, pp.
1347
1361
.
38.
Memory
S. B.
,
Akcasayar
N.
,
Eraydin
H.
, and
Marto
P. J.
,
1995
b, “
Nucleate Pool Boiling of R-114 and R-114-Oil Mixtures from Smooth and Enhanced Surfaces-II Tube Bundles
,”
International Journal of Heat Mass Transfer
, Vol.
38
, pp.
1363
1376
.
39.
Moeykens, S. A., Kelly, J. E., and Pate, M. B., 1996, “Spray Evaporation Heat Transfer Performance of R-123 in Tube Bundles,” to be published in ASHRAE Transactions, Vol. 102, Part 2.
40.
Mori
Y.
,
Hijikata
K.
,
Hirasawa
S.
, and
Nakayama
W.
,
1981
, “
Optimized Performance of Condensers with Outside Condensing Surfaces
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
103
, pp.
96
102
.
41.
O’Connor
J. P.
, and
You
S. M.
,
1995
, “
A Painting Technique to Enhance Pool Boiling Heat Transfer in Saturated FC-72
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
117
, pp.
387
393
.
42.
Ohadi
M. M.
,
Li
S. S.
, and
Dessiatoun
S.
,
1994
, “
Electrostatic Heat Transfer Enhancement in a Tube Bundle Gas-to-Gas Heat Exchanger
,”
Journal of Enhanced Heat Transfer
, Vol.
1
, pp.
327
335
.
43.
Ohadi
M. M.
,
Nelson
D. A.
, and
Zia
S.
,
1991
, “
Heat Transfer Enhancement of Laminar and Turbulent Pipe Flow Via Corona Discharge
,”
International Journal of Heat Mass Transfer
, Vol.
34
, pp.
1175
1187
.
44.
Pate, M. B., Ayub, Z. H., and Kohler, J., 1990, “Heat Exchangers for the Air-Conditioning and Refrigeration Industry: State-of-the-Art Design and Technology, Compact Heat Exchangers, Hemisphere, New York, NY, pp. 567–590.
45.
Ragi, E. G., 1995, Praxair Corp., Tonawanda, NY, personal communication, Nov. 6.
46.
Somerscales, E. F. C., and Bergles, A. E., 1996, “Enhancement of Heat Transfer and Fouling Mitigation,” to be published in Advances in Heat Transfer.
47.
Soria
J.
, and
Norton
M. P.
,
1991
, “
The Effect of Transverse Plate Vibration on the Mean Laminar Convective Boundary Layer Heat Transfer Rate
,”
Experimental Thermal and Fluid Science
, Vol.
4
, pp.
226
238
.
48.
Thome, J. R., 1990, Enhanced Boiling Heat Transfer, Hemisphere, New York, NY.
49.
Thome, J. R., 1996, “Heat Transfer Augmentation of Shell-and-Tube Heat Exchangers for the Chemical Process Industry,” Proceedings of the 2nd European Thermal-Sciences and 14th UIT National Heat Transfer Conference, Edizioni ETS, Pisa, Italy, Vol. 1, pp. 15–26.
50.
Trewin, R. R., Jensen, M. K., and Bergles, A. E., 1992, “Crossflow Boiling in Enhanced Tube Bundles,” Two-Phase Flow in Energy Systems, HTD-Vol. 220, ASME, New York, NY, pp. 11–17.
51.
Trewin, R. R., Jensen, M. K., and Bergles, A. E., 1996, “Phenomenological Model of Pool Boiling from Enhanced Surfaces in Binary Mixtures,” presented at special symposium in connection with ASME International Mechanical Engineering Congress and Exposition, Atlanta, GA, November 1996.
52.
Wang, G. W., Liang, H. S., Yang, W. J., and Vrable, D., 1996, “Nucleate Pool Boiling on Micro Graphite-Copper Composite Surfaces,” in press.
53.
Webb, R. L., 1994, “Advances in Modeling Enhanced Heat Transfer Surfaces,” Proceedings of the Tenth International Heat Transfer Conference, Institution of Chemical Engineers, Rugby, England, Vol. 1, pp. 445–459.
54.
Webb
R. L.
, and
Bergles
A. E.
,
1983
, “
Heat Transfer Enhancement: Second Generation Technology
,
Mechanical Engineering
, Vol.
115
, No.
6
, pp.
60
67
.
55.
Webb
R. L.
, and
McQuade
W. F.
,
1993
, “
Pool Boiling of R-ll and R-123 Oil-Refrigerant Mixtures on Plain and Enhanced Tube Geometries
,”
ASHRAE Transactions
, Vol.
99
, Part 1, pp.
1225
1236
.
56.
Yeh, H.-C., 1989, “Device for Producing High Heat Transfer in Heat Exchanger Tubes,” U.S. Patent 4,832,114, May 23.
57.
Yilmaz, S., Hwalck, J. J., and Westwater, J. N., 1980, “Pool Boiling Heat Transfer Performance for Commercial Enhanced Tube Surfaces,” ASME Paper No. 80-HT-41.
58.
Yilmaz, S., Palen, J. W., and Taborek, J., 1981, “Enhanced Boiling Surfaces as Single Tubes and Tube Bundles,” Advances in Enhanced Heat Transfer 1981, HTD-Vol. 18, ASME, New York, pp. 123–129.
This content is only available via PDF.
You do not currently have access to this content.