Abstract

Improving the sealing performance of labyrinth seal is beneficial in reducing the loss of downstream components as well as improving the aero-engines' efficiency. Meanwhile, the optimization of labyrinth seal is more cost-effective than optimizing other components of aero-engines. Based on extreme gradient boosting (XGBoost) and improved genetic algorithm (GA), an automatic optimizer for smooth straight-through labyrinth seal is proposed. According to the ordering of feature importance, the ten selected geometric parameters of smooth straight-through labyrinth seals with two gaps (0.1 mm, 0.25 mm) are optimized when the axial length of labyrinth seal is limited. The optimization results show that the leakage rate of the optimized labyrinth seal with two gaps is 19.67% and 23.80% lower than the reference labyrinth seal, respectively. It is found that the decrease of fin height, fin angle, fillet radius, and fin width, and the increase of fin pitch are beneficial to improve the sealing performance of smooth straight-through labyrinth seal. The analysis of flow field reveals the reasons for the improvement of sealing performance due to the change of geometric parameters. However, it must be noted that the optimization effect decreases as the pressure ratio increases, primarily as the result of the increase in carry-over coefficient. This work provides a new approach to optimize smooth straight-through labyrinth seal.

References

1.
Han
,
L. S.
,
Wang
,
Y. Q.
,
Liu
,
K.
,
Ban
,
Z. Y.
, and
Liu
,
H. B.
,
2020
, “
Theoretical Modeling for Leakage Characteristics of Two-Phase Flow in the Cryogenic Labyrinth Seal
,”
Int. J. Heat Mass Transfer
,
159
, p.
120151
.10.1016/j.ijheatmasstransfer.2020.120151
2.
Jia
,
X. Y.
,
Zheng
,
Q.
,
Jiang
,
Y. T.
, and
Zhang
,
H.
,
2019
, “
Leakage and Rotordynamic Performance of T Type Labyrinth Seal
,”
Aerosp. Sci. Technol.
,
88
, pp.
22
31
.10.1016/j.ast.2019.02.043
3.
Kong
,
X.
,
Liu
,
G.
,
Liu
,
Y.
, and
Zheng
,
L.
,
2017
, “
Experimental Testing for the Influences of Rotation and Tip Clearance on the Labyrinth Seal in a Compressor Stator Well
,”
Aerosp. Sci. Technol.
,
71
, pp.
556
567
.10.1016/j.ast.2017.10.003
4.
Chougule
,
H. H.
,
Ramerth
,
D.
, and
Ramachandran
,
D.
,
2008
, “
Low Leakage Designs for Rotor Teeth and Honeycomb Lands in Labyrinth Seals
,”
ASME
Paper No. GT2008-51024.10.1115/GT2008-51024
5.
Vakili
,
A. D.
,
Meganathan
,
A. J.
,
Ayyalasomayajula
,
S.
,
Hesler
,
S.
, and
Shuster
,
L.
,
2006
, “
Advanced Labyrinth Seals for Steam Turbine Generators
,”
ASME
Paper No. GT2006-91263.10.1115/GT2006-91263
6.
Zhou
,
W. J.
,
Zhao
,
Z. B.
,
Wang
,
Y. F.
,
Shi
,
J. L.
,
Gan
,
B.
,
Li
,
B.
, and
Qiu
,
N.
,
2021
, “
Research on Leakage Performance and Dynamic Characteristics of a Novel Labyrinth Seal With Staggered Helical Teeth Structure
,”
Alexandria Eng. J.
,
60
(
3
), pp.
3177
3187
.10.1016/j.aej.2020.12.059
7.
Zhang
,
M. J.
,
Yang
,
J. G.
,
Zhang
,
W. F.
, and
Gu
,
Q. L.
,
2022
, “
Reducing Labyrinth Seal Leakage With Application of Axially Arranged Baffles With Increasing Height
,”
J. Phys.: Conf. Ser.
,
2256
(
1
), p.
012036
.10.1088/1742-6596/2256/1/012036
8.
Qin
,
H.
,
Lu
,
D.
,
Zhong
,
D.
,
Wang
,
Y.
, and
Song
,
Y.
,
2020
, “
Experimental and Numerical Investigation for the Geometrical Parameters Effect on the Labyrinth-Seal Flow Characteristics of Fast Reactor Fuel Assembly
,”
Ann. Nucl. Energy
,
135
, p.
106964
.10.1016/j.anucene.2019.106964
9.
Alizadeh
,
M.
,
Nikkhahi
,
B.
,
Farahani
,
A. S.
, and
Fathi
,
A.
,
2018
, “
Numerical Study on the Effect of Geometrical Parameters on the Labyrinth–Honeycomb Seal Performance
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
232
(
2
), pp.
362
373
.10.1177/0954410017742227
10.
Szymański
,
A.
,
Wróblewski
,
W.
,
Frączek
,
D.
,
Bochon
,
K.
,
Dykas
,
S.
, and
Marugi
,
K.
,
2018
, “
Optimization of the Straight-Through Labyrinth Seal With a Smooth Land
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
122503
.10.1115/1.4040767
11.
Asok
,
S. P.
,
Sankaranarayanasamy
,
K.
,
Sundararajan
,
T.
,
Rajesh
,
K.
, and
Ganeshan
,
G. S.
,
2007
, “
Neural Network and CFD-Based Optimisation of Square Cavity and Curved Cavity Static Labyrinth Seals
,”
Tribol. Int.
,
40
(
7
), pp.
1204
1216
.10.1016/j.triboint.2007.01.003
12.
Braun
,
E.
,
Dullenkopf
,
K.
, and
Bauer
,
H.
,
2012
, “
Optimization of Labyrinth Seal Performance Combining Experimental, Numerical and Data Mining Methods
,”
ASME
Paper No. GT2012-68077.10.1115/GT2012-68077
13.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining
, San Francisco, CA, Aug. 13–17, pp.
785
794
.10.1145/2939672.2939785
14.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.10.1023/A:1010933404324
15.
Vapnik
,
V.
,
1999
, “
An Overview of Statistical Learning Theory
,”
IEEE Trans. Neural Networks
,
10
(
5
), pp.
988
999
.10.1109/72.788640
16.
Katoch
,
S.
,
Chauhan
,
S. S.
, and
Kumar
,
V.
,
2021
, “
A Review on Genetic Algorithm: Past, Present, and Future
,”
Multimedia Tools Appl.
,
80
(
5
), pp.
8091
8126
.10.1007/s11042-020-10139-6
17.
Funda
,
K. O.
, and
Berkan
,
A. S.
,
2022
, “
Chaotic Hunger Games Search Optimization Algorithm for Global Optimization and Engineering Problems
,”
Math. Comput. Simul.
,
192
, pp.
514
536
.10.1016/j.matcom.2021.09.014
18.
Zhang
,
Q. Z.
,
Liu
,
H. S.
,
Guo
,
J.
,
Wang
,
Y. F.
,
Liu
,
L. Y.
,
Liu
,
H. Z.
, and
Cong
,
H. X.
,
2023
, “
Improved GWO-MCSVM Algorithm Based on Nonlinear Convergence Factor and Tent Chaotic Mapping and Its Application in Transformer Condition Assessment
,”
Electr. Power Syst. Res.
,
224
, p.
109754
.10.1016/j.epsr.2023.109754
19.
Srinivas
,
M.
, and
Patnaik
,
L. M.
,
1994
, “
Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms
,”
IEEE Trans. Intell. Transp. Syst.
,
24
(
4
), pp.
656
667
.10.1109/21.286385
20.
Stoff
,
H.
,
1980
, “
Incompressible Flow in a Labyrinth Seal
,”
J. Fluid Mech.
,
100
(
4
), pp.
817
829
.10.1017/S0022112080001437
21.
Waschka
,
W.
,
Wittig
,
S.
, and
Kim
,
S.
,
1992
, “
Influence of High Rotational Speeds on the Heat Transfer and Discharge Coefficients in Labyrinth Seals
,”
ASME J. Turbomach.
,
114
(
2
), pp.
462
468
.10.1115/1.2929166
22.
Vermes
,
G.
,
1961
, “
A Fluid Mechanics Approach to the Labyrinth Seal Leakage Problem
,”
ASME J. Eng. Gas Turbines Power
,
83
(
2
), pp.
161
169
.10.1115/1.3673158
23.
Nayak
,
K. C.
,
2020
, “
Effect of Rotation on Leakage and Windage Heating in Labyrinth Seals With Honeycomb Lands
,”
ASME J. Eng. Gas Turbines Power
,
142
(
8
), p.
081001
.10.1115/1.4047180
24.
Suryanarayanan
,
S.
, and
Morrison
,
G. L.
,
2009
, “
Analysis of Flow Parameters Influencing Carry-Over Coefficient of Labyrinth Seals
,”
ASME
Paper No. GT2009-59245.10.1115/GT2009-59245
25.
Liu
,
H.
,
Li
,
G. Q.
,
Li
,
A.
,
Zhang
,
S.
,
Li
,
H.
, and
Lu
,
X. G.
,
2023
, “
Effects of High Rotational Speed on Leakage and Windage Heating of Staggered Labyrinth Seals With Smooth and Honeycomb Lands
,”
ASME J. Eng. Gas Turbines Power
,
145
(
8
), p.
081005
.10.1115/1.4062480
You do not currently have access to this content.