Abstract

Next generation aeroengines will operate at ever-increasing pressure ratios with smaller cores, where the control of blade-tip clearances across the flight cycle is an emerging design challenge. Such clearances are affected by the thermal expansion of the compressor disks that hold the blades, where acute thermal stresses govern operating life. The cavities formed by corotating disks feature a heated shroud at high radius and cooler cobs at low radius. A three-dimensional, unsteady and unstable flow structure is induced by destabilizing buoyancy forces. The radial distribution of disk temperature is driven by a conjugate heat transfer at Grashof numbers of order 1013. Such flows are further influenced by the heat and mass exchange with an axial throughflow of cooling air at low radius, where the interaction depends on the Rossby number and separation of the disk cobs. This paper is the first to study the effect of cob separation ratio on mass and heat exchange for compressor cavities. A model is developed to predict the cavity-throughflow interaction, and disk and fluid-core temperatures. The judicious use of a physics-based methodology provides reliable, reduced-order solutions to the complex conjugate problem, thereby making it appropriate for practical engine thermo-mechanical design. The model is validated by detailed experimental measurements using the Bath Compressor Cavity Rig, where variable disk cob spacings were investigated over a range of engine-representative conditions. The unsteady pressure measurements collected in the frame of reference of the rotating disks reveal new insight into the fundamentally aperiodic nature of the flow structure. This new understanding of heat transfer informs an expedient reduced-order model and enables more efficient design of future high pressure-ratio aeroengines.

References

1.
Vullo
,
V.
, and
Vivio
,
F.
,
2013
,
Rotors: Stress Analysis and Design
,
Springer
, Berlin.
2.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(
1
), pp.
175
183
.10.1115/1.2835635
3.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Large-Eddy Simulation of Buoyancy-Induced Flow in a Sealed Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p. 021020.10.1115/1.4041113
4.
Owen
,
J. M.
, and
Tang
,
H.
,
2015
, “
Theoretical Model of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111005
.10.1115/1.4031353
5.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2020
, “
Simulations of Compressibility Effects in Centrifugal Buoyancy-Induced Flow in a Closed Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
85
(
10
), p.
108656
.10.1016/j.ijheatfluidflow.2020.108656
6.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2021
, “
Large-Eddy Simulations of High Rossby Number Flow in the High-Pressure Compressor Inter-Disk Cavity
,”
ASME J. Turbomach.
,
143
(
11
), p.
111002
.10.1115/1.4050951
7.
Tang
,
H.
, and
Owen
,
J. M.
,
2018
, “
Theoretical Model of Buoyancy-Induced Heat Transfer in Closed Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032605
.10.1115/1.4037926
8.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041030
.10.1115/1.4048601
9.
Tang
,
H.
, and
Owen
,
J.
,
2023
, “
Plume Model for Buoyancy-Induced Flow and Heat Transfer in Closed Rotating Cavities
,”
ASME J. Turbomach.
,
145
(
1
), p.
011005
.10.1115/1.4055449
10.
Lock
,
G. D.
,
Jackson
,
R. W.
,
Pernak
,
M.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Tang
,
H.
, and
Scobie
,
J. A.
,
2023
, “
Stratified and Buoyancy-Induced Flow in Closed Compressor Rotors
,”
ASME J. Turbomach.
,
145
(
1
), p.
011008
.10.1115/1.4055448
11.
Nicholas
,
T. E. W.
,
Pernak
,
M. J.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Tang
,
H.
,
2023
, “
Transient Heat Transfer and Temperatures in Closed Compressor Rotors
,”
Appl. Therm. Eng.
,
230
, p.
120759
.10.1016/j.applthermaleng.2023.120759
12.
Parry
,
J.
,
Tang
,
H.
,
Scobie
,
J.
,
Lock
,
G.
, and
Carnevale
,
M.
,
2024
, “
Conjugate Modelling of a Closed co-Rotating Compressor Cavity
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051007
.10.1115/1.4063632
13.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air - Heat Transfer
,”
ASME J. Turbomach.
,
114
(
1
), pp.
229
236
.10.1115/1.2927990
14.
Bohn
,
D. E.
,
Deutsch
,
G.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “Flow Visualisation in a Rotating Cavity With Axial Throughflow,”
ASME
Paper No.
V003T01A084
.10.1115/2000-GT-0280
15.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.10.1115/1.2927991
16.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Effect of an Axial Throughflow on Buoyancy-Induced Flow in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
80
(
12
), p.
108468
.10.1016/j.ijheatfluidflow.2019.108468
17.
Long
,
C. A.
,
Miché
,
N. D. D.
, and
Childs
,
P. R. N.
,
2007
, “
Flow Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1391
1404
.10.1016/j.ijheatfluidflow.2007.04.010
18.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
.10.1016/j.ijheatfluidflow.2007.04.009
19.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. V05CT16A041.10.1115/V05CT16A04110.1115/GT2014-27174
20.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J. M.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Disks
,”
ASME J. Turbomach.
,
137
(
12
), p.
121003
.10.1115/1.4031355
21.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2022
, “
Unsteady Pressure Measurements in a Heated Rotating Cavity
,” ASME
J. Eng. Gas Turbines Power
,
144
(
4
), p.
041017
.10.1115/1.4053390
22.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2022
, “
Measurement of Heat Transfer and Flow Structures in a Closed Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051005
.10.1115/1.4053392
23.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.10.1115/1.4049100
24.
Pernak
,
M.
,
Nicholas
,
T. E. W.
,
Carnevale
,
M.
,
Lock
,
G. D.
,
Tang
,
H.
, and
Scobie
,
J. A.
,
2024
, “
Flow and Heat Transfer in Rotating Compressor Cavities With Inverted Shroud-Throughflow Temperature Differences
,”
ASME
Paper No. GT2023-123211.10.1115/GT2023-123211
25.
Gao
,
F.
, and
Chew
,
J. W.
,
2022
, “
Flow and Heat Transfer Mechanisms in a Rotating Compressor Cavity Under Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051010
.10.1115/1.4052649
26.
Nicholas
,
T. E. W.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Tang
,
H.
,
2024
, “
A Model of Mass and Heat Transfer for Discs Temperature Prediction in Open Compressor Cavities
,”
ASME J. Turbomach.
,
146
(
4
), p.
041001
.10.1115/1.4064082
27.
Fisher
,
E.
, and
Puttock-Brown
,
M. R.
,
2024
, “
Experimental Measurements of Flow-Averaged Toroidal Vortces in Buoyancy-Dominated Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
146
(
4
), p.
041006
.10.1115/1.4063689
28.
Pernak
,
M. J.
,
Nicholas
,
T. E. W.
,
Williams
,
J. T.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2023
, “
Experimental Investigation of Transient Flow Phenomena in Rotating Compressor Cavities
,”
ASME J. Turbomach.
,
145
(
12
), p.
121005
.10.1115/1.4063507
29.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.10.1115/1.4050631
30.
Pountney
,
O. J.
,
Patinios
,
M.
,
Tang
,
H.
,
Luberti
,
D.
,
Sangan
,
C. M.
,
Scobie
,
J. A.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Calibration of Thermopile Heat Flux Gauges Using a Physically-Based Equation
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
235
(
7
), pp.
1806
1816
.10.1177/0957650920982103
31.
Tang
,
H.
, and
Owen
,
J. M.
,
2021
, “
Effect of Radiation on Heat Transfer Inside Aeroengine Compressor Rotors
,”
ASME J. Turbomach.
,
143
(
5
), p.
051005
.10.1115/1.4050114
You do not currently have access to this content.