Abstract

In an internal combustion engine, interactions of fuel droplets and heated walls can significantly affect the combustion process and engine performance. The formation and characteristics of secondary droplets from drop-wall interactions are functions of various factors such as fuel properties, impact velocity, ambient conditions, and wall temperature. Understanding the impact behavior is important to optimize the distribution of the fuel-air mixture for efficient and clean combustion and to develop a comprehensive spray-wall interaction model. In this study, three-dimensional smoothed particle hydrodynamics (SPH) simulations are performed to investigate the interactions of fuel droplets with a heated wall at atmospheric and elevated pressures over a range of Weber numbers (We). The SPH model is validated using available experimental data. Secondary atomization is characterized by using size distributions for different fuels. The resulting droplets vary in size, where secondary droplets are mostly below 7 μm in diameter. Following these cases, this paper qualitatively describes the impact process and proposes empirical correlation relating the mean secondary droplet size to ambient pressure in the film-boiling regime. Postimpingement vaporization characteristics are also analyzed and compared for fuels with drastically different vapor pressures.

References

1.
Kang
,
S. G.
,
Ryu
,
J. I.
,
Motily
,
A. H.
,
Numkiatsakul
,
P.
,
Lee
,
T. H.
,
Kriven
,
W. M.
,
Kim
,
K. S.
, and
Kweon
,
C. B. M.
,
2022
, “
Thermomechanical Characterization of Hot Surface Ignition Device Using Phenomenological Heat Flux Model
,”
J. Propul. Power
,
38
(
4
), pp.
656
670
.10.2514/1.B38662
2.
Wang
,
D. M.
, and
Watkins
,
A. P.
,
1993
, “
Numerical Modeling of Diesel Spray Wall Impaction Phenomena
,”
Int. J. Heat Fluid Flow
,
14
(
3
), pp.
301
312
.10.1016/0142-727X(93)90062-R
3.
Sikalo
,
S.
,
Marengo
,
M.
,
Tropea
,
C.
, and
Ganic
,
E.
,
2000
, “
Analysis of Impact of Droplets on Horizontal Surfaces
,”
Thermal Sciences 2000. Proceedings of the International Thermal Science Seminar
, Bled, Slovenia, June 11–14, pp.
347
352
.10.1615/ICHMT.2000.TherSieProcVol2TherSieProcVol1.460
4.
Staat
,
H. J.
,
Tran
,
T.
,
Geerdink
,
B.
,
Riboux
,
G.
,
Sun
,
C.
,
Gordillo
,
J. M.
, and
Lohse
,
D.
,
2015
, “
Phase Diagram for Droplet Impact on Superheated Surfaces
,”
J. Fluid Mech.
,
779
, p.
R3
.10.1017/jfm.2015.465
5.
Xu
,
L.
,
Zhang
,
W. W.
, and
Nagel
,
S. R.
,
2005
, “
Drop Splashing on a Dry Smooth Surface
,”
Phys. Rev. Lett.
,
94
(
18
), p.
184505
.10.1103/PhysRevLett.94.184505
6.
Börnhorst
,
M.
, and
Deutschmann
,
O.
,
2018
, “
Single Droplet Impingement of Urea Water Solution on a Heated Substrate
,”
Int. J. Heat Fluid Flow
,
69
, pp.
55
61
.10.1016/j.ijheatfluidflow.2017.10.007
7.
Chausalkar
,
A.
,
Kweon
,
C.-B. M.
,
Kong
,
S.-C.
, and
Michael
,
J. B.
,
2020
, “
Leidenfrost Behavior in Drop-Wall Impacts at Combustor-Relevant Ambient Pressures
,”
Int. J. Heat Mass Transfer
,
153
, p.
119571
.10.1016/j.ijheatmasstransfer.2020.119571
8.
Gangtao
,
L.
,
Shengqiang
,
S.
,
Yali
,
G.
, and
Jili
,
Z.
,
2016
, “
Boiling From Liquid Drops Impact on a Heated Wall
,”
Int. J. Heat Mass Transfer
,
100
, pp.
48
57
.10.1016/j.ijheatmasstransfer.2016.04.061
9.
Bussmann
,
M.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
1999
, “
On a Three-Dimensional Volume Tracking Model of Droplet Impact
,”
Phys. Fluids
,
11
(
6
), pp.
1406
1417
.10.1063/1.870005
10.
Villegas
,
L. R.
,
Alis
,
R.
,
Lepilliez
,
M.
, and
Tanguy
,
S.
,
2016
, “
A Ghost Fluid/Level Set Method for Boiling Flows and Liquid Evaporation: Application to the Leidenfrost Effect
,”
J. Comput. Phys.
,
316
, pp.
789
813
.10.1016/j.jcp.2016.04.031
11.
Villegas
,
L. R.
,
Tanguy
,
S.
,
Castanet
,
G.
,
Caballina
,
O.
, and
Lemoine
,
F.
,
2017
, “
Direct Numerical Simulation of the Impact of a Droplet Onto a Hot Surface Above the Leidenfrost Temperature
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1090
1109
.10.1016/j.ijheatmasstransfer.2016.08.105
12.
Ivan
,
P.
,
Zvonimir
,
P.
,
Wilfried
,
E.
, and
Milan
,
V.
,
2021
, “
Numerical Modeling of Spray Secondary Atomization With the Euler-Eulerian Multi-Fluid Approach
,”
Comput. Fluids
,
222
, p.
104919
.10.1016/j.compfluid.2021.104919
13.
Sohag
,
M. M. A.
,
Chausalkar
,
A.
,
Li
,
L.
, and
Yang
,
X.
,
2022
, “
Numerical Study of Drop Spread and Rebound on Heated Surfaces With Consideration of High Pressure
,”
Phys. Fluids
,
34,
p. 113319.10.1063/5.0124794
14.
Ahamed
,
S.
,
Cho
,
Y.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2022
, “
Development and Application of a Drop-Wall Interaction Model at High Ambient Pressure Conditions
,”
Atomization Sprays
,
32
(
4
), pp.
1
23
.10.1615/AtomizSpr.2022038549
15.
Akhtar
,
S.
, and
Yule
,
A.
,
2001
, “
Droplet Impaction on a Heated Surface at High Weber Numbers
,”
ILASS-Europe 2001
,
ETH Zurich
,
Switzerland
, Sept. 2–6, p.
37
.
16.
Cossali
,
G. E.
,
Marengo
,
M.
, and
Santini
,
M.
,
2008
, “
Thermally Induced Secondary Drop Atomisation by Single Drop Impact Onto Heated Surfaces
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
167
177
.10.1016/j.ijheatfluidflow.2007.09.006
17.
Moita
,
A. S.
, and
Moreira
,
A. L.
,
2009
, “
Development of Empirical Correlations to Predict the Secondary Droplet Size of Impacting Droplets Onto Heated Surfaces
,”
Exp. Fluids
,
47
(
4–5
), pp.
755
768
.10.1007/s00348-009-0719-1
18.
Piskunov
,
M.
,
Breitenbach
,
J.
,
Schmidt
,
J. B.
,
Strizhak
,
P.
,
Tropea
,
C.
, and
Roisman
,
I. V.
,
2021
, “
Secondary Atomization of Water-in-Oil Emulsion Drops Impinging on a Heated Surface in the Film Boiling Regime
,”
Int. J. Heat Mass Transfer
,
165
, p.
120672
.10.1016/j.ijheatmasstransfer.2020.120672
19.
Yang
,
X.
, and
Kong
,
S.-C.
,
2017
, “
Smoothed Particle Hydrodynamics Method for Evaporating Multiphase Flows
,”
Phys. Rev. E
,
96
(
3
), p.
033309
.10.1103/PhysRevE.96.033309
20.
Yang
,
X.
,
Pan
,
Y.
, and
Kong
,
S.-C.
,
2018
, “
Predicting the Outcomes of Fuel Drop Impact on Heated Surfaces Using SPH Simulation
,”
14th Triennial International Conference on Liquid Atomization and Spray Systems
, Chicago, IL, July 22–26, arXiv:1712.05830v3.https://arxiv.org/ftp/arxiv/papers/1712/1712.05830.pdf
21.
Subedi
,
K. K.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2022
, “
Numerical Study of Consecutive Drop/Wall Impacts Using Smoothed Particle Hydrodynamics
,”
Int. J. Multiphase Flow
,
151
, p.
104060
.10.1016/j.ijmultiphaseflow.2022.104060
22.
Adami
,
S.
,
Hu
,
X.
, and
Adams
,
N. A.
,
2010
, “
A New Surface-Tension Formulation for Multi-Phase SPH Using a Reproducing Divergence Approximation
,”
J. Comput. Phys.
,
229
(
13
), pp.
5011
5021
.10.1016/j.jcp.2010.03.022
23.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
(
1
), pp.
543
574
.10.1146/annurev.aa.30.090192.002551
24.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1974
, “
Fuel Droplet Size Distribution in Diesel Combustion Chamber
,”
SAE
Paper No. 740715.
25.
Welzl
,
E.
,
1991
, “
Smallest Enclosing Disks (Balls and Ellipsoids
),”
New Results and New Trends in Computer Science
,
Springer
,
Berlin, Germany
, pp.
359
370
.
26.
Werner
,
R.
,
Mayhew
,
E.
,
Kim
,
K.
,
Kweon
,
C.-B.
, and
Michael
,
J. B.
,
2023
, “
Characterizing Secondary Size Distributions for Single Drop Impacts at High Wall Superheat
,”
ILASS-Americas 33rd Annual Conference on Liquid Atomization and Spray System
, Albuquerque, NM, May 14–17, Paper No. 1416.
27.
Liu
,
H.
,
Ma
,
J.
,
Dong
,
F.
,
Yang
,
Y.
,
Liu
,
X.
,
Ma
,
G.
,
Zheng
,
Z.
, and
Yao
,
M.
,
2018
, “
Experimental Investigation of the Effects of Diesel Fuel Properties on Combustion and Emissions on a Multi-Cylinder Heavy-Duty Diesel Engine
,”
Energy Convers. Manage.
,
171
, pp.
1787
1800
.10.1016/j.enconman.2018.06.089
28.
Safarov
,
J.
,
Ashurova
,
U.
,
Ahmadov
,
B.
,
Abdullayev
,
E.
,
Shahverdiyev
,
A.
, and
Hassel
,
E.
,
2018
, “
Thermophysical Properties of Diesel Fuel Over a Wide Range of Temperatures and Pressures
,”
Fuel
,
216
, pp.
870
889
.10.1016/j.fuel.2017.11.125
29.
Werner
,
R.
,
Mayhew
,
E.
,
Kim
,
K.
,
Kweon
,
C.-B.
, and
Michael
,
J. B.
,
2024
, “
Examining Surface-Wetting and Leidenfrost Transition of Jet Fuels and Bicomponent Mixtures
,”
Exp. Ther. Fluid Sci.
,
154
, p.
111167
.10.1016/j.expthermflusci.2024.111167
30.
Malatesta
,
W. A.
, and
Yang
,
B.
,
2021
, “
Aviation Turbine Fuel Thermal Conductivity: A Predictive Approach Using Entropy Scaling-Guided Machine Learning With Experimental Validation
,”
ACS Omega
,
6
(
43
), pp.
28579
28586
.10.1021/acsomega.1c02934
31.
Temme
,
J. E.
,
Busch
,
S.
,
Coburn
,
V. D.
, and
Kweon
,
C.-B. M.
,
2019
, “
Fuel Blend Ratio Effects on Ignition and Early Stage Soot Formation
,”
Proceedings of the 11th U.S. National Combustion Meeting
,
Pasadena, CA
, Mar. 24–27, Paper No. SAND2019-1987C.https://www.osti.gov/servlets/purl/1602158#:~:text=For%20the%20fuel%20blend%2C%20there,near%20the%20vapor%20leading%20edge
32.
Chickos
,
J. S.
, and
Zhao
,
H.
,
2005
, “
Measurement of the Vaporization Enthalpy of Complex Mixtures by Correlation-Gas Chromatography. The Vaporization Enthalpy of RP-1, JP-7, and JP-8 Rocket and Jet Fuels at T = 298.15 K
,”
Energy Fuels
,
19
(
5
), pp.
2064
2073
.10.1021/ef050116m
33.
Council
,
N. R.
,
1996
, “
Physical and Chemical Properties of Military Fuels
,”
Permissible Exposure Levels for Selected Military Fuel Vapors
,
National Academy Press
,
Washington, DC
, pp.
13
17
.
34.
Daoan
,
S.
,
Wenzhe
,
C.
,
Chunying
,
L.
, and
Jian
,
L.
,
2021
, “
Experimental Study on Atomization Characteristics of High-Energy-Density Fuels Using a Fuel Slinger
,”
Energy
,
234
, p.
121222
.10.1016/j.energy.2021.121222
35.
Jisoo
,
S.
,
Donghwan
,
K.
,
Jeawon
,
S.
, and
Sungwook
,
P.
,
2020
, “
Effects of the Physical Properties of Fuel on Spray Characteristics From a Gas Turbine Nozzle
,”
Energy
,
205
, p.
118090
.10.1016/j.energy.2020.118090
36.
Krause
,
P.
, and
Labuda
,
R.
,
2018
, “
The Influence of Liquid Viscosity on Atomized Fuel Mean Droplet Size Determined by the Laser Diffraction Method
,”
New Trends Prod. Eng.
,
1
(
1
), pp.
435
441
.10.2478/ntpe-2018-0054
37.
Dubovkin
,
N. F.
,
Abashina
,
L. D.
, and
Tararyshkin
,
M. E.
,
1981
, “
Vapor Pressure and Critical Parameters of Jet Fuels
,”
Chem. Technol. Fuels Oils (Engl. Transl.)
,
17
, pp.
207
210
.10.1007/BF00730587
38.
Sipowska
,
J. T.
, and
Wieczorek
,
S. A.
,
1984
, “
Vapour Pressures and Excess Gibbs Free Energies of (Cyclohexanol + n-Heptane) Between 303.147 and 373.278 K
,”
J. Chem. Thermodyn.
,
16
(
7
), pp.
693
699
.10.1016/0021-9614(84)90051-X
39.
Oktavian
,
R.
,
Amidelsi
,
V.
,
Rasmito
,
A.
, and
Wibawa
,
G.
,
2013
, “
Vapor Pressure Measurements of Ethanol–Isooctane and 1-Butanol–Isooctane Systems Using a New Ebulliometer
,”
Fuel
,
107
, pp.
47
51
.10.1016/j.fuel.2013.02.005
You do not currently have access to this content.