This work is motivated by the thermoacoustic instability challenges associated with ultra-low emissions gas turbine (GT) combustors. It demonstrates the first use of high-speed dual-plane orthogonally-polarized stereoscopic-particle image velocimetry (PIV) and synchronized OH planar laser-induced fluorescence in a premixed swirling flame. We use this technique to explore the effects of combustion and longitudinal acoustic forcing on the time- and phase-averaged flow field—particularly focusing on the behavior of the Reynolds stress in the presence of harmonic forcing. We observe significant differences between ensemble-averaged and time-averaged Reynolds stress. This implies that the large-scale motions are nonergodic, due to coherent oscillations in Reynolds stress associated with the convection of periodic vortical structures. This result has important implications on hydrodynamic stability models and reduced-order computational fluid dynamics simulations, which do show the importance of turbulent transport on the problem, but do not capture these coherent oscillations in their models.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
2.
Im
,
H. G.
,
Arias
,
P. G.
,
Chaudhuri
,
S.
, and
Uranakara
,
H. A.
,
2016
, “
Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames
,”
Combust. Sci. Technol.
,
188
(
8
), pp.
1182
1198
.
3.
Bell
,
J. B.
,
Day
,
M. S.
,
Shepherd
,
I. G.
,
Johnson
,
M. R.
,
Cheng
,
R. K.
,
Grcar
,
J. F.
,
Beckner
,
V. E.
, and
Lijewski
,
M. J.
,
2005
, “
Numerical Simulation of a Laboratory-Scale Turbulent V-Flame
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
(
29
), pp.
10006
10011
.
4.
Wang
,
H.
,
Luo
,
K.
,
Yi
,
F.
, and
Fan
,
J.
,
2013
, “
Analysis of Flame Characteristics in a Laboratory-Scale Turbulent Lifted Jet Flame Via DNS
,”
Int. J. Spray Combust. Dyn.
,
5
(
3
), pp.
225
242
.
5.
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
An Assessment of Turbulence Models for Linear Hydrodynamic Stability Analysis of Strongly Swirling Jets
,”
Eur. J. Mech., B/Fluids
,
59
, pp.
205
218
.
6.
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2016
, “
Coherent Structures in a Swirl Injector at Re = 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.
7.
Ganapathisubramani
,
B.
,
Longmire
,
E. K.
,
Marusic
,
I.
, and
Pothos
,
S.
,
2005
, “
Dual-Plane PIV Technique to Determine the Complete Velocity Gradient Tensor in a Turbulent Boundary Layer
,”
Exp. Fluids
,
39
(
2
), pp.
222
231
.
8.
Mullin
,
J. A.
, and
Dahm
,
W. J. A.
,
2005
, “
Dual-Plane Stereo Particle Image Velocimetry (DSPIV) for Measuring Velocity Gradient Fields at Intermediate and Small Scales of Turbulent Flows
,”
Exp. Fluids
,
38
(
2
), pp.
185
196
.
9.
Nieckele
,
A. O.
,
Thompson
,
R. L.
, and
Mompean
,
G.
,
2016
, “
Anisotropic Reynolds Stress Tensor Representation in Shear Flows Using DNS and Experimental Data
,”
J. Turbul.
,
17
(
6
), pp.
602
632
.
10.
Foley
,
C. W.
,
Chterev
,
I.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2016
, “
High Resolution Particle Image Velocimetry and CH-PLIF Measurements and Analysis of a Shear Layer Stabilized Flame
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p. 031603.
11.
Zhang
,
Q.
,
Shanbhogue
,
S. J.
,
Lieuwen
,
T.
, and
O'Connor
,
J.
,
2011
, “
Strain Characteristics Near the Flame Attachment Point in a Swirling Flow
,”
Combust. Sci. Technol.
,
183
(
7
), pp.
665
685
.
12.
Chaudhuri
,
S.
,
Kostka
,
S.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2010
, “
Blowoff Dynamics of Bluff Body Stabilized Turbulent Premixed Flames
,”
Combust. Flame
,
157
(
4
), pp.
790
802
.
13.
Steinberg
,
A. M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2013
, “
Parametric Study of Vortex Structures and Their Dynamics in Swirl-Stabilized Combustion
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3117
3125
.
14.
Roy
,
S.
,
Yi
,
T.
,
Jiang
,
N.
,
Gunaratne
,
G. H.
,
Chterev
,
I.
,
Emerson
,
B.
,
Lieuwen
,
T.
,
Caswell
,
A. W.
, and
Gord
,
J. R.
,
2017
, “
Dynamics of Robust Structures in Turbulent Swirling Reacting Flows
,”
J. Fluid Mech.
,
816
, pp.
554
585
.
15.
Smith
,
T. E.
,
Chterev
,
I. P.
,
Emerson
,
B. L.
,
Noble
,
D. R.
, and
Lieuwen
,
T. C.
,
2017
, “
Comparison of Single- and Multinozzle Reacting Swirl Flow Dynamics
,”
J. Propul. Power
,
34
(2), pp.
384
394
.
16.
Mendez
,
M.
,
Raiola
,
M.
,
Masullo
,
A.
,
Discetti
,
S.
,
Ianiro
,
A.
,
Theunissen
,
R.
, and
Buchlin
,
J.-M.
,
2017
, “
POD-Based Background Removal for Particle Image Velocimetry
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
181
192
.
17.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
2
), pp.
241
258
.
18.
Kro¨ner
,
M.
,
Fritz
,
J.
, and
Sattelmayer
,
T.
,
2003
, “
Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
693
700
.
19.
Oberleithner
,
K.
,
Terhaar
,
S.
,
Rukes
,
L.
, and
Paschereit
,
C. O.
,
2013
, “
Why Nonuniform Density Suppresses the Precessing Vortex Core
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p. 121506.
20.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Disturbance Field Characteristics of a Transversely Excited Burner
,”
Combust. Sci. Technol.
,
183
(
5
), pp.
427
443
.
21.
Acharya
,
V. S.
,
Shin
,
D. H.
, and
Lieuwen
,
T.
,
2013
, “
Premixed Flames Excited by Helical Disturbances: Flame Wrinkling and Heat Release Oscillations
,”
J. Propul. Power
,
29
(
6
), pp.
1282
1291
.
22.
Hemchandra
,
S.
, and
Lieuwen
,
T.
,
2010
, “
Local Consumption Speed of Turbulent Premixed Flames–An Analysis of "Memory Effects
,”
Combust. Flame
,
157
(
5
), pp.
955
965
.
23.
Hanjalić
,
K.
, and
Launder
,
B.
,
2011
,
Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.