The effects of effusion and film cooling momenta on combustor flow fields are investigated. Steady, compressible three-dimensional (3D) simulations are performed on a single-swirler combustor using Reynolds-averaged Navier–Stokes (RANS) with flamelet generated manifold and Lagrangian–Eulerian multiphase spray, while accounting for dome and liner cooling. Two simulations are performed on the same mesh. One simulation is conducted using a parallelized, automated, predictive, imprint cooling (PAPRICO) model with dynamic flux boundary conditions and downstream pressure probing (DFBC-DPP). PAPRICO involves removing the cooling jet geometry from the dome and liner while retaining the cooling hole imprints. The PAPRICO model does not require a priori knowledge of the cooling flow rates through various combustor liner regions nor specific mesh partitioning. The other simulation is conducted using the homogenously patched cooling (HPC) model, which involves removing all the cooling jets. The HPC model applies volumetric sources adjacent to the combustor wall regions where cooling jets are present. The momentum source, however, becomes negligible. The HPC model is not predictive and requires tedious ex situ mass flow measurements from an auxiliary flowbench experiment, afflicted with systematic errors. Hence, the actual in situ air flow splits through the several combustor regions is not known with absolute certainty. The numerical results are compared with measurements of mass flow rates, static pressure drops, and path-integrated temperatures. The results demonstrate that it is critical to account for the discrete dome and liner cooling momentum to better emulate the reacting flow in a combustor.

References

1.
Drennan
,
S.
, and
Kumar
,
G.
,
2014
, “Demonstration of an Automatic Meshing Approach for Simulation of a Liquid Fueled Gas Turbine With Detailed Chemistry,”
AIAA
Paper No. 2014-3628.
2.
Briones
,
A. M.
,
Sekar
,
B.
,
Blunck
,
D. L.
,
Erdmann
,
T. J.
, and
Shouse
,
D.
,
2015
, “
Reacting Flows in Ultra-Compact Combustors With Combined-Diffuser-Flameholder
,”
J. Propul. Power
,
31
(
1
), pp.
238
252
.
3.
Briones
,
A. M.
,
Thornburg
,
H.
,
Sekar
,
B.
,
Neuroth
,
C.
, and
Shouse
,
D.
,
2013
, “Numerical-Experimental Research of Ultra Compact Combustors Containing Film and Effusion Cooling,”
AIAA
Paper No. 2013-1045.
4.
Briones
,
A. M.
,
Rankin
,
B. A.
,
Stouffer
,
S. D.
,
Erdmann
,
T. J.
, and
Burrus
,
D. L.
,
2016
, “Parallelized, Automated, Predictive, Imprint Cooling Model for Combustor Liners,”
ASME
Paper No. GT2016-56187.
5.
Briones
,
A. M.
,
Rankin
,
B. A.
,
Stouffer
,
S. D.
,
Erdmann
,
T. J.
, and
Burrus
,
D. L.
,
2016
, “
Parallelized, Automated, Predictive, Imprint Cooling Model for Combustor Systems
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031505
.
6.
Marosky
,
A.
,
Seidel
,
V.
,
Sattelmayer
,
T.
, and
Magni
,
F.
,
2012
, “
Impact of Cooling Air Injection on the Combustion Stability of a Premixed Swirl Burner Near Lean Blowout
,”
ASME J. Eng. Gas Turbines Power
,
134
(12), p.
121502
.
7.
Marosky
,
A.
,
Seidel
,
V.
,
Sattelmayer
,
T.
,
Magni
,
F.
, and
Geng
,
W.
,
2013
, “
Impact of Cooling Air Injection on the Combustion Stability of a Premixed Swirl Burner Near Lean Blowout
,”
ASME J. Eng. Gas Turbines Power
,
135
(11), p.
111501
.
8.
Putnam
,
A. A.
,
1971
,
Combustion-Driven Oscillations in Industry
,
Elsevier
,
New York
.
9.
Richards
,
G. A.
,
Straub
,
D. L.
, and
Robey
,
E. H.
,
2003
, “
Passive Control of Combustion Dynamics in Stationary Gas Turbines
,”
J. Propul. Power
,
19
(
5
), pp.
795
810
.
10.
Mansour
,
A.
,
Benjamin
,
M.
, and
Steinthorsson
,
E.
,
2000
, “A New Hybrid Air Blast Nozzle for Advanced Gas Turbine Combustors,”
ASME
Paper No. GT2000-0117.
11.
ANSYS,
2016
, “ANSYS FLUENT 17.1, Theory Guide,” ANSYS Inc., Canonsburg, PA.
12.
Briones
,
A.
,
Stouffer
,
S.
,
Vogiatzis
,
K.
,
Rein
,
K.
, and
Rankin
,
B.
,
2017
, “Effects of Discrete Dome and Liner Cooling Momentum on Combustor Flow Fields,”
AIAA
Paper No. 2017-0781.
13.
Barth
,
T. J.
, and
Jespersen
,
D.
,
1989
, “The Design and Application of Upwind Schemes on Unstructured Meshes,”
AIAA
Paper No. 89-0366.
14.
Anderson
,
W.
, and
Bonhus
,
D. L.
,
1994
, “
An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids
,”
Comput. Fluids
,
23
(
1
), pp.
1
21
.
15.
Erdmann
,
T. J.
,
Burrus
,
D. L.
,
Briones
,
A. M.
,
Stouffer
,
S. D.
,
Rankin
,
B. A.
, and
Caswell
,
A. W.
,
2017
, “Experimental and Computational Characterization of Flow Rates in a Multiple-Passage Gas Turbine Combustor Swirler,”
ASME
Paper No. GT2017-65252.
You do not currently have access to this content.