Aeronautical gas turbine ignition is still not well understood and its management and control are mandatory for new lean-burner designs. The fundamental aspects of swirled confined two-phase flow ignition are addressed in the present work. Two facilities enable the analysis of two characteristic phases of the process. The knowledge for ignition, acoustics and instabilities (KIAI)-Spray single-injector burner was investigated in terms of local flow properties, including the air velocity and droplet fuel (n-heptane) size-velocity characterization by phase Doppler anemometry (PDA), and the study of local equivalence ratio by means of planar laser-induced fluorescence (PLIF) on a tracer (toluene). The initial spark location inside the chamber is vital to ensure successful ignition. An ignition probability map was elaborated varying the location of a 532 nm laser-induced spark in the chamber under ultralean nominal conditions (ϕ = 0.61). The outer recirculation zone (ORZ) was found to be the best region for placing a spark and successfully igniting the mixture. A strong correlation was found between the ignition probability field and the airflow turbulent kinetic energy and velocity fields. Local equivalence ratio enhances the importance of the ORZ. Once a successful ignition is accomplished on one injector, the injector-to-injector flame propagation must be examined. High-speed visualization through two synchronized perpendicular cameras was applied on the KIAI-Spray linear multi-injector burner. Four different injector-to-injector distances and four fuels of different volatilities (n-heptane, n-decane, n-dodecane, and jet-A1 kerosene) were evaluated. Spray branches and interinjector regions changed with the interinjector distance. Two different flame propagation mechanisms were identified: the direct radial propagation and the arc propagation mode. Ignition delay times were modified with the injector-to-injector distance and with the different fuels.

References

1.
Ballal
,
D.
, and
Lefebvre
,
A. H.
,
1974
, “The Influence of Flow Parameters on Minimum Ignition Energy and Quenching Distance,”
Proc. Combust. Inst.
,
15
(1), pp.
1473
1481
.
2.
Lewis
,
B.
, and
von Elbe
,
G.
,
1987
,
Combustion, Flames Explosions of Gases
, 3rd ed.,
Academic Press
, Orlando, FL.
3.
Cardin
,
C.
,
Renou
,
B.
,
Cabot
,
G.
, and
Boukhalfa
,
A. M.
,
2013
, “
Experimental Analysis of Laser-Induced Spark Ignition of Lean Turbulent Premixed Flames: New Insight Into Ignition Transition
,”
Combust. Flame
,
160
(
8
), pp.
1414
1427
.
4.
Ahmed
,
S. F.
,
Balachandran
,
R.
,
Marchione
,
T.
, and
Mastorakos
,
E.
,
2007
, “
Spark Ignition of Turbulent Nonpremixed Bluff-Body Flames
,”
Combust. Flame
,
151
(
1–2
), pp.
366
385
.
5.
Shy
,
S. S.
,
Liu
,
C. C.
, and
Shih
,
W. T.
,
2010
, “
Ignition Transition in Turbulent Premixed Combustion
,”
Combust. Flame
,
157
(
2
), pp.
341
350
.
6.
Marchione
,
T.
,
Ahmed
,
S. F.
, and
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Swirling n-Heptane Spray Flames Using Single and Multiple Sparks
,”
Combust. Flame
,
156
(
1
), pp.
166
180
.
7.
Letty
,
C.
,
Mastorakos
,
E.
,
Masri
,
A. R.
,
Juddoo
,
M.
, and
O’Loughlin
,
W.
,
2012
, “
Structure of Igniting Ethanol and n-Heptane Spray Flames With and Without Swirl
,”
Exp. Therm. Fluid Sci.
,
43
, pp.
47
54
.
8.
Ballal
,
D. R.
, and
Lefebvre
,
A. H.
,
1981
, “
A General Model of Spark Ignition for Gaseous and Liquid Fuel-Air Mixtures
,”
Proc. Combust. Inst.
,
18
(
1
), pp.
1737
1746
.
9.
Moesl
,
K. G.
,
Vollmer
,
K. G.
,
Sattelmayer
,
T.
,
Eckstein
,
J.
, and
Kopecek
,
H.
,
2009
, “
Experimental Study on Laser-Induced Ignition of Swirl-Stabilized Kerosene Flames
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
021501
.
10.
Cordier
,
M.
,
Vandel
,
A.
,
Renou
,
B.
,
Cabot
,
G.
,
Boukhalfa
,
A. M.
,
Esclapez
,
L.
,
Barré
,
D.
,
Cuenot
,
B.
, and
Gicquel
,
L.
,
2013
, “
Experimental and Numerical Analysis of an Ignition Sequence in a Multiple-Injectors Burner
,”
ASME
Paper No. GT2013-94681.
11.
Barré
,
D.
,
Esclapez
,
L.
,
Cordier
,
M.
,
Riber
,
E.
,
Cuenot
,
B.
,
Staffelbach
,
G.
,
Renou
,
B.
,
Vandel
,
A.
,
Gicquel
,
L. Y. M.
, and
Cabot
,
G.
,
2014
, “
Flame Propagation in Aeronautical Swirled Multi-Burners: Experimental and Numerical Investigation
,”
Combust. Flame
,
161
(
9
), pp.
2387
2405
.
12.
Kao
,
Y.-H.
,
Denton
,
M.
,
Wang
,
X.
,
Jeng
,
S.-M.
, and
Lai
,
M.-C.
,
2015
, “
Experimental Spray Structure and Combustion of a Linearly-Arranged 5 Swirler Array
,”
ASME
Paper No. GT2015-42509.
13.
Bach
,
E.
,
Kariuki
,
J.
,
Dawson
,
J. R.
,
Mastorakos
,
E.
, and
Bauer
,
H. J.
,
2013
, “
Spark Ignition of Single Bluff-Body Premixed Flames and Annular Combustors
,”
AIAA
Paper No. 2013-1182.
14.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.
15.
Cordier
,
M.
,
Vandel
,
A.
,
Cabot
,
G.
,
Renou
,
B.
, and
Boukhalfa
,
A. M.
,
2013
, “
Laser-Induced Spark Ignition of Premixed Confined Swirled Flames
,”
Combust. Sci. Technol.
,
185
(
3
), pp.
379
407
.
16.
Rossow
,
B.
,
2011
, “
Processus Photophysiques de Molécules Organiques Fluorescentes et du Kérosène—Applications aux Foyers de Combustion
,” Ph.D. thesis, Paris-Sud 11, Orsay, France.
17.
Kamal
,
K.
,
2007
, “
Global Combustion Responses of Practical Hydrocarbon Fuels: n-Heptane, Iso-Octane, n-Decane, n-Dodecane and Ethylene
,”
Ph.D. thesis
, Case Western Reserve University, Cleveland, OH.
18.
Prieur
,
K.
,
Durox
,
D.
,
Beaunier
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
, 2017, “
Ignition Dynamics in an Annular Combustor for Liquid Spray and Premixed Gaseous Injection
,”
Proc. Combust. Inst.
,
36
(3), pp. 3717–3724.
19.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Riber
,
E.
,
Schmitt
,
T.
,
Cuenot
,
B.
,
Durox
,
D.
, and
Candel
,
S.
,
2015
, “
Large Eddy Simulations of the Ignition Sequence of an Annular Multiple-Injector Combustor
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3159
3166
.
20.
Cordier
,
M.
,
2013
, “
Allumage et Propagation de Flamme Dans les Ecoulements Fortement Swirlés: Etudes Expérimentales et Numériques
,” Ph.D. thesis, INSA de Rouen, Saint-Étienne-du-Rouvray, France.
You do not currently have access to this content.