Over the past two decades, significant efforts have been made to introduce film riding sealing technology on large industrial or aerospace gas turbines. The main challenge comes from the high surface speeds and high temperatures, which lead to large thermal distortions. One approach to tackle the effect of thermally induced distortion is to design a seal to operate at a large film to limit the viscous heat generation. To design a seal pad that maximizes force at relatively high film heights, it is important to select the seal groove type that looks the most promising to deliver this characteristic. Several groove types have been assessed as part of this study. The most promising groove type is the Rayleigh step, which gives the strongest level of combined hydrostatic and hydrodynamic load support while also being easier to tessellate on individual seal segments. The results generated using a uniform grid Reynolds equation method show reasonable agreement with computational fluid dynamics (CFD) calculations. This provides confidence in the validity of the method, approach, and results.

References

1.
Munson
,
J.
, and
Pecht
,
G.
,
1992
, “
Development of Film Riding Seals for a Gas Turbine Engine
,”
Tribol. Trans.
,
35
(
1
), pp.
65
70
.
2.
Steinetz
,
B.
,
Hendricks
,
R.
, and
Munson
,
J.
,
1998
, “
Advanced Seal Technology Role in Meeting Next Generation Turbine Engine Goals
,” NASA, Technical Report No. 1998-206961, AVT-PPS Paper No. 11.
3.
Munson
,
J.
,
1993
, “
Testing of a High Performance Compressor Discharge Seal
,”
AIAA
Paper No. 93-1997.
4.
Berard
,
G.
, and
Zheng
,
X.
,
2008
, “
Development of Non-Contacting, Low-Leakage, Large-Diameter Air Seal
,”
AIAA
Paper No. 2008-4507.
5.
Dobeck
,
L.
,
1973
, “
Development of Mainshaft Seals for Advanced Air Breathing Propulsion Systems
,”
NASA
, Technical Report No. CR121177.
6.
Ludwig
,
L.
, and
Lynwander
,
P.
,
1974
, “
Mainshaft Seals for Small Gas Turbine Engines
,”
American Society of Lubrication Engineers and American Society of Mechanical Engineers, Joint Lubrication Conference
, NASA Report No. TM X-71558.
7.
O'Brien
,
M.
,
1976
, “
Development of a Short-Length Self-Acting Seal
,” Technical Report No. CR135159, NASA.
8.
Shapiro
,
W.
,
1995
, “
Dynamic Analysis of Film Riding Face Seals
,”
AIAA
Paper No. 1995-2765.
9.
Gardner
,
J.
,
1999
, “
Development of a High Speed, High Temperature Compressor Discharge Seal
,”
AIAA
Paper No. 1999-2684.
10.
Menendez
,
R.
, and
Cunningham
,
M.
,
1999
, “
Development of Liftoff Seal Technology for Air–Oil Axial Sealing Applications
,”
AIAA
Paper No. 1999-2822.
11.
Zheng
,
X.
,
Gardener
,
J.
, and G, B.,
2000
, “
Adaptive Divert Double-Spiral Groove Face Seals for High Speed, High Temperature Applications
,”
AIAA
Paper No. 2000-3373.
12.
Zheng
,
X.
, and
Berard
,
G.
,
2001
, “
Development of Non-Contacting, Film-Riding Face Seals for Large-Diameter Gas Engines
,”
AIAA
Paper No. 2001-3624.
13.
Zheng
,
X.
,
2005
, “
Parametrical Study of Hydrodynamic Seal Using a 2D Design Code and Comparing With a 3D CFD Model
,”
ASME
Paper No. GT2005-68915.
14.
Berard
,
G.
, and
Zheng
,
X.
,
2006
, “
Analysis and Design of a Double-Divert Spiral Groove Seal
,”
AIAA
Paper No. 2006-4753.
15.
Wolfe
,
C.
,
Bagepalli
,
B.
,
Turnquist
,
N.
,
Tseng
,
T.
,
McNickle
,
A.
,
Hwang
,
M.
, and
Steinetz
,
B.
,
1996
, “
Full-Scale Testing and Analytical Validation of an Aspirating Face Seal
,”
AIAA
Paper No. 1996-2802.
16.
Bagepalli
,
B. S.
,
Imam
,
I.
,
Wolfe
,
C. E.
,
Tseng
,
T. W.
,
Shapiro
,
W.
, and M, S. B.,
1996
, “
Dynamic Analysis of an Aspirating Face Seal for Aircraft-Engine Application
,”
AIAA
Paper No. 1996-2803.
17.
Turnquist
,
N. A.
,
Tseng
,
T. W.
,
McNickle
,
A. D.
,
Athavale
,
M.
, and
Steinetz
,
B. M.
,
1999
, “
Analysis and Full Scale Testing of an Aspirating Face Seal With Improved Flow Isolation
,”
AIAA
Paper No. 1998-3285.
18.
Crudgington
,
P.
,
Cross
,
E.
, and
Cross
,
R.
,
2012
, “
A Novel High Temperature Non-Contact Dynamic Seal
,”
AIAA
Paper No. 2012-4004.
19.
Munson
,
J.
,
Grant
,
D.
, and
Agrawal
,
G.
,
2001
, “
Foil Face Seal Development
,”
AIAA
Paper No. 2001-3483.
20.
Munson
,
J.
,
Grant
,
D.
, and
Agrawal
,
G.
,
2002
, “
Foil Face Seal Proof-of-Concept Demonstration Testing
,”
AIAA
Paper No. 2002-3791.
21.
Saheli
,
M.
,
Heshmat
,
H.
, and
Walton
,
J. F.
,
2001
, “
Non-Contacting Compliant Foil Seal for Gas Turbine Engine
,”
NASA Secondary Seal Workshop
, pp.
187
207
.
22.
Salehi
,
M.
,
Heshmat
,
H.
,
Walton
,
J. F.
, and
Cruszen
,
S.
,
1999
, “
The Application of Foil Seals to a Gas Turbine Engine
,”
AIAA
Paper No. 99-2821.
23.
Heshmat
,
C. A.
,
Xu
,
D. S.
, and
Heshmat
,
H.
,
2000
, “
Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods
,”
ASME J. Tribol.
,
122
(
1
), pp.
199
204
.
24.
Heshmat
,
H.
, and
Walton
,
J. F.
,
2008
, “
Innovative High-Temperature Compliant Surface Foil Face Seal Development
,”
AIAA
Paper No. 2008-4505.
25.
Justak
,
J.
, and
Crudgington
,
P.
,
2006
, “
Evaluation of a Film Riding Hybrid Seal
,”
AIAA
Paper No. 2006-4932.
26.
Andres
,
L. S.
,
Baker
,
J.
, and
Delgado
,
A.
,
2008
, “
Measurements of Leakage and Power Loss in a Hybrid Brush Seal
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012505
.
27.
Arora
,
G.
,
Proctor
,
M.
,
Steinetz
,
B.
, and
Delgado
,
I.
,
1999
, “
Pressure Balanced, Low Hysteresis, Finger Seal Test Results
,”
AIAA
Paper No. 99-2686.
28.
Braun
,
M. J.
,
Choy
,
F. K.
, and
Pierson
,
H. M.
,
2003
, “
Structural and Dynamic Considerations Towards the Design of Padded Finger Seals
,”
AIAA
Paper No. 2003-4698.
29.
Proctor
,
M.
, and
Delgado
,
I.
,
2008
, “
Preliminary Test Results of a Non-Contacting Finger Seal on a Herringbone-Grooved Rotor
,”
AIAA
Paper No. 2008-4506.
30.
Zhang
,
H.
, Q, Z.
,
Yue
,
G.
, and
Deng
,
Q.
,
2012
, “
On the Lifting Performance of a Finger Seal With Pad Grooved
,”
ASME
Paper No. GT2012-68855.
31.
Li
,
C.-H.
,
1976
, “
Thermal Deformation in a Mechanical Face Seal
,”
ASLE Trans.
,
19
(
2
), pp.
146
152
.
32.
Dhagat
,
S. K.
,
Sinhasan
,
R.
, and
Singh
,
D. V.
,
1982
, “
Suitability of Grooved Configurations for Bearings and Seals
,”
J. Wear
,
82
(
1
), pp.
37
44
.
33.
Galimutti
,
P.
,
Sawicki
,
J.
, and
Fleming
,
D.
,
2009
, “
Analysis of Finger Seal Lift Pads
,”
ASME
Paper No. GT2009-59842.
34.
Cheng
,
H.
, and
Wilcock
,
D.
,
1968
, “
Design of Floated Shoe Close Clearance Seals for Supersonic Jet Engine Compressors
,”
ASME J. Lubr. Technol.
,
90
(
2
), pp.
500
509
.
35.
Liu
,
Y.
,
Shen
,
X.
,
Xu
,
W.
, and
Wang
,
Z.
,
2004
, “
Performance Comparison and Parametric Study on Spiral Groove Gas Film Face Seals
,”
Sci. China Phys., Mech., Astron.
,
47
(
S1
), pp.
29
36
.
36.
Temis
,
J. M.
,
Selivanov
,
A. V.
, and
Dzeva
,
I. J.
,
2013
, “
Finger Seal Design Based on Fluid-Solid Interaction Model
,”
ASME
Paper No. GT2013-95701.
37.
Yue
,
G.
,
Zheng
,
Q.
, and
Zhu
,
R.
,
2008
, “
Numerical Simulation of a Padded Finger Seal
,”
ASME
Paper No. GT2008-50997.
38.
Szeri
,
A.
,
1980
,
Tribology, Friction, Lubrication, and Wear
,
McGraw-Hill
,
New York
.
39.
Lebeck
,
A.
,
1991
,
Principles and Design of Mechanical Face Seals
, Illustrated ed., Wiley, Hoboken, NJ, p.
764
.
40.
Cheng
,
H.
,
Chow
,
C.
, and
Wilcock
,
D.
,
1968
, “
Behavior of Hydrostatic and Hydrodynamic Noncontacting Face Seals
,”
J. Lubr. Technol.
,
90
(
2
), pp.
510
519
.
41.
Mathworks
,
2015
, MATLAB Global Optimisation Toolbox Release, The Mathworks Inc., Natick, MA.
You do not currently have access to this content.